-R190 165 NEN GENERATION KIOH.EDGE PROCESSING VOL| 1
SYRACUSE UNIV NV J A ROBINSON ET AL. OCT 87
RADC-TR-87-163-VOL-1 F38682-84-K-8001
UNCLASSIFIED F/G 1275

N

~ r
o Y SH ®f © 3
B £
1T = = = == ,mm
[IR z 2
[N ﬂ. 33 m b | Q m
s == - -
. . ER
| N oo - 4 — Ie}
dA3a0000 — .
z°
= = < £ 3
m—— pa—. —_— s
—_—— e =
- ol of oo . o iR s g TP L LY) o~ e T e A e Y *
72RO T R L PR @ EERERS Y GRS

Q

AD-A190 165

RADC-TR-87-165, Vol | {of three)
Final Technical Report
October 1987

NEW GENERATION KNOWLEDGE
PROCESSING

DTIC

Syracuse University ELECTE 5’{,
FEB1 81988¢5

J. Alan Robinson and Kevin J. Greene 5D

APPROVED FOR PUBLIC RELEASE DISTRIELTION UNLMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

Y W P T g ¥V ¥ P P P A A AR RN L L IR N T AT Tt et e A P e e e e e . . " -
YOAAS ,_\'\f’\' AN R ANy TN J\T._f- W W T T T T N T T T e e T e Tt e et e P R S
T TR T T A MR ERN .":"' "'-.:"'?'-2 e e T T e L L N T e T
ST EaeE e NS . P N I T PR A e A N TN A T T AT T e T e T
™ - ,\.\-\‘\‘ .~ MER T e . ‘-_--_J'
N EN NS Lt AT T
Mh’)ﬁ.\.\;\i b, VG R DA T G T AR YR R R SRS

la il el dalh tagh walh ‘ol oalh sl Sad Al S A BA Ad Al dad Aad La A gk Aol B A e a0

L N B}

N

o

-

:-'_1

:-'Ii

This report has been reviewed by the RADC Public Affairs Office (PA) and A

is releasable to the National Technical Information Service (NTIS). At NTIS 3
it will be releasable to the general public, including foreign nations. ,j
.'- <

RADC-TR-87-165, Vol I (of three) has been reviewed and is approved for Qf
publication. fs
1

-

oy

-y

3

i

5K

-

APPROVED: %%_ﬂ EA’&'* oy

NORTHRUP FOWLER III
Project Engineer

@MU g, o
APPROVED:

RAYMOND P. URTZ,
Technical Dlrector
Directorate of Command & Control

FOR THE COMMANDER: 8”9‘ awf W 100«,(..«-(;

RICHARD W. POULTOT
Directorate of Plans & Programs

EJ I1f your address has changed or if you wish to be removed from the RADC

s mailing list, or if the addressee is no longer employed by your organizaticnm,

%y please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in

t maintaining a current mailing list. :

-
e Do not returm copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

g
-

T s A 8 A

LN

[:‘;.'J' &
'."’ « -~
l.,\‘_:.,l-/..
ATt

F" . o

____UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION

'b RESTRICTIVE MARKINGS

2!)/£ECLASS<F\CAT10N ‘DOWNGRADING SCHEDULE

i

UNCLASSIFIED N/A

2a SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIBUTION /AVAILABILITY OF REPORT

J

N/A rtppreved for jublic relensc;, Cistribution

unlirited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

N/A

RADC-TR-87-165, Vol T (of three)

S MONITORING ORGANIZATION REPORT N MBERS!

6a NAME OF PERFORMING ORGAN'ZATION 6D

Svracuse lniversity

QOF= (e SYMBOL
(if applicabie)

7a NAME OF MONITORING ORGANIZATON

Rome Air Development Center (0015

6C ADDRILS [Gity, State, and ZIP Code) 7o ADLRESS 'City State and J1P Codge)
Svracuse NV 173244 Criffass AR Y 134as1-50
—_
SaNAVE O ADING SPORSOR NG 3n OFT{E $r\I80L G OPROC_ANENT NITROMENT LT A, URER
DRCGAN.ZATON (If appiicabie)
Reve Alr Development Center T0ES PI0602-8'—r -000]
8. ADDIISS(City. State, and 7:P Code, 0 SOLFCE OF fu ol s NLVocos -
[fer ~ 370 PROGRAM EROGECT TAS. AR LT
Criffiiss AFB NY 13441-5700 FLEMENT NG o e e
627021 1581 27
\ - —— -
1_ v Tk (Include Security Classification)
;: y NIW GENERATTON KNOWLEDCE PROCESSTNG
- , -
) 12 PERSONAL AUTHOR(S)
J. Alan Robinson, Kevin J. Greene
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) ['5 PAGE COUNT
Final #rRoM Pec 83 10 .Jan 87 October 1987 80
16 SUPPLEMENTARY NOTAT'ON
N/A
17 COSATI CODES '8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP 5/8C%0. 2 | artificial Tntelligence Graph Reductinn
12 a5 Logic Programming Comhinatars
Lunctional Procramming Drogramming lapoeuay.

architcecture.

abstractions, and combinations.

“JThe main goal of this project was ro design a high-level
named SUTER, an acronym for "Syracuse University Parallel Fxpression Redncer™) with two
parts: a language which would combine the functional (as in 1.ISP, SASL or M) with the
relati-ial (as in PROLOG) programming concepts into a single new paradigm and a machine

The SUPER language is an extensjon of the hasic lambda-calculus which we
Tt is formally a collection of expressions together with some rules and definitions which

give them meaning and make it possible to do deduct ive reasoning and computation with them.
The expressions of the SIPER language fall into three main syntactic catepories:

'9 ABSTRACT ‘Continue on reverse If necessary and «dentify by block number)

which would execute programs written in the language, nsinp reduction and a multiprocessor

(cont'd on reverse)

rogramming system ‘whi
e

call lambda plus.

h we hiyve

atoms,

20 DSTRIBLTON AVAILABILITY OF ABSTRACT
&J A assiFED UNLIMITED [SAME AS RPT

[J oTic 45FRS

2Y ABSTRACT SECJR'TY CLASSIFICATION
UNCLASSITILD

223 NAME OF RESPONSIBLE INDIVIDUAL
Northrup Fowler TII

2D TELEPHONE (Indlude Area Code) | 22 OFF(E

(315) 330-7794 RADC (COLS)

SYMRBOL

DD Form 1473, JUN 86

'-v"-s.'f-._,w_)\. hs
g z "v "-J.‘_'p W

f
"5‘3’ n'. ‘.'- ! l"!‘..!. AN . ,u W "”"lh!: |

Previous editions are obsolete

A "WW TN AT AT AT AT IT AL I I N P
A AN NG A AR
. s " r - ‘..-_-',_».J'J.f s

UNCLASSTFIED

 SECURITY (LASSFICAT'ON OF THiS PAGE

-I-"J‘./'f.-.'_.-,~, b]
- ":‘"‘:":"‘:'-.{:{- oS) -
.n'-V).,'-’ ’ .-'..--.'. .
K DR) '-_- e A
RSN AN

0
;
byt
i

UNCLASSIFIED

Block 19. Abstract (Cont'd)

Volume I describes the SUPER system, and discusses the conceptual backgrcund in terms of
which it can best be understood. In developing these idecas over the period of the project
we devised and implemented two related single-processor reduction systems, LNF and LNF-
Plus, as experimental tools to help us learn more about SUPER language design issues.

These systems have turned out to be of considerable interest and utility in their own-Tight,
and they have taken on separate and independent identities. -

Volume 2 contains a detailed presentation of the single-processor software programming
system LNF which was developed to serve as a test bed and simulation tool for the
"classical' part of the SUPER system.

Volume 3 presents the final, enhanced version of LXF, which we call LNF-Plus and which
provides the user with as close an approximation as we can achieve on a single processor
of the SUPER system. Volume 3 Is also designed as a useful guide to someone who wishes
to use the system for experimental computations.

UNCLASSIFIED

TR T S TR L W e e e LT N LT DS S N \»ﬁi\.v L T TR I P)
) .F~ *J“A\J*\J'\J‘x-l‘\.‘\. _..-. f\("‘n-. [N "_\"\" J'\.a‘.(\-)',‘ P e f\.-._.r_'.r, .:\
! v, J\mr¢ o A A AT . g P E AT PN
" J*u . -~ ~ LY . A
At s Y o
WP

¥ oa_ e ¢ _8_8_n

be Al Al A0 AR lal <ol GRSl Gl Sl Sl s Ao G I Aarh -l 'R oG SUL o r-v-.'wi

CONTENTS OF VOLUME 1
CHAPTERDO INTRODUCTORY REMARKS
CHAPTER 1 THE SUPER LANGUAGE
CHAPTER 2 GRAPH REDUCTION
CHAPTER 3 THE SUPER MACHINE
CHAPTER 4 RELATED WORK
REFERENCES
e
3
N 144
;
¢
: S S i S S

Il e i Ale Al e - ai Sal el Uik S8 Bah 8 S8 0 a8 o'h uve at@ 058 20D L8 288" a0n" 2he 4 Ll aRi ol Rt et Sat aav G et aat Sof ¥]

CHAPTER 0. INTRODUCTORY REMARKS.

This is Volume 1 of a three-volume final report on a project entitled "New Generation
Knowledge Processing" which began on 6 December 1983 and ended on 31
December 1986.

Goal of the project. The goal of the project was to design and develop a high-level
programming system (called SUPER, for Syracuse University Parallel Expression
Reduction) consisting of two parts:
* a language with both functional (as in LISP, SASL or ML)
and relational (as in PROLOG) constructs;
* a machine to process expressions written in the language,

using reduction and a multiprocessor architecture.

SUPER and LNF-Plus. As an experimental tool and test-bed to help us study SUPER
design issues we developed a single-processor reduction system, LNF-Plus, which
turned out to be of considerable interest and utility in its own right. LNF-Plus is a
single-processor reduction-based implementation of the SUPER language. In order to
emphasize and praserve its independence LNF-Plus is documented separately in the
second and third volumes of this report. Volume 2 deals with LNF, the purely
functional programming subset of LNF-Plus. Volume 3 discusses the relational
programming features which extend LNF to LNF-Plus, and provides the necessary
"how-to" instructions which enable a somewhat experienced Lisp Machine user to
begin interacting with LNF-Plus.

Volume 1 contains, following this introductory Chapter 0, three main chapters. Chapter
1 discusses the SUPER language. Chapter 2 explains graph reduction. Chapter 3
presents our ideas for the SUPER machine. These call for a fine-grained parallel
machine architecture consisting of a large number (millions) of identical small
processors ("nodules”) linked by a dynamically variable connection network (the
"postal system”) enabling the nodules to act as the nodes in a graph representation of

A0S I T 07 LN I I IR T U PN v
&iﬂ.}-"&"\"\"'\.’&' AR AN SNy
R r*__e_‘f\a,.. LA A A B

) P B A LN
"\) “

a SUPER expression. The collective behavior of the nodules effects the reduction of

the expression to normal form.

SUPER and LOGLISP. The immediate precursor of SUPER was LOGLISP
(Robinson and Sibert [24]). The goal of LOGLISP was to design and experimentally
implement a programming system in which both relational and functional styles were
supported. To some extent this was achieved, but in a rather awkward way. The
awkwardness was traceable to the fact that the relational programming part of
LOGLISP was no more than a kind of patch grafted onto an existing LISP, so that
LOGLISP is simply an old language with some modifications. SUPER, on the other
hand, is a new language designed from scratch to meet the same goal. It is a natural
successor to LOGLISP. Indeed, it is a second attempt to reach the same objectives.
Thus programming in SUPER, as in LOGLISP, is mzant to be a generalized kind of
logic programming which subsumes both relational programming and functional

programming.

We do not attempt to persuade the reader of the advantages of the relational
programming style based on the Horn clause resolution subset of the first order
predicate calculus. This has been well done both by its many proponents (especially
by Kowalski [20] and Clark [7]) and by the practical success of PROLOG.

Nor do we try to make the case for the virtues of the functional programming styie

based on the A-calculus. This has been already achieved not only by its many
advocates, notably Landin [21], Burge [4], Turner {28], and Henderson [15], but also
by the great practical success of LISP. Of course LISP is not a purely declarative

A-calculus system, since it contains several imperative control features. Nevertheless

LISP has pioneered the trail for later, purer A-calculus-based programming systems
(including certain versions of LISP itself, such as SCHEME [26]) and has introduced
several generations of programmers to the power and elegance of the functional
programming style in which functions are dealt with as first-class objects on a par with

2

B S NI AN

'} b %
L
e S A S SN NS 4 ~
N I,\A\; .r‘.r\'a“r_:.-&ax ‘_;4‘;\.\ 3 _.?,_._.. YRR LS *“'a o e N AT LT

AL N \}" ROYRAL IS N RS -‘\-"-_' AT R T e " L '\(‘ l’\f LN A L l\l‘_\l‘ o

S --'-?-fi'.*i'-.r.-Jvr.--a}\ N D N A T VA s O ~

.-,'»/‘t,_,\- S -\,-.J;\.- ‘.-. RS A Ce -‘ o :}F‘I‘ " S N S s
™

]) » W C L g \r\I
A e e o N S A R S i § M A AR SRR RS GY
" B e g g e N T N S e N T AN

-

-

=)

e
P

- - e

numbers, truth values, strings, and the like.

S ERPe

Our main purpose is rather to justify our view (as was attempted earlier with LOGLISP)

that relatior.. » and functional programming need not and should not be kept apan in
separate systems but can be smoothly integrated within one homogeneous linguistic

framewcrk. The following discussion gives some motivation for this view.

What does PROLOG do? There is a nice intuitive version of what PROLOG is actually

doing, as it looks for answers, in a world described by a given sentence P (its

' SNy ~ Fatalt o

"program"”), to the query

Q = IxC(x).
According to this version PROLOG is attempting to find a counterexample to Q, namely,

a way of interpreting the language (relation and function symbols) found in P and Q

such that P and (not Q) both come out true.

Note that not Q is the proposition

| Vx not C(x).

:.I Now in the event that Q is a logical consequence of P, the attempt to find a
':: counterexample to Q will automatically generate one or more barriers

. A because R,

: in which A;is an answer and R; is a proof of C(A;) from P. There may even be infinitely
3 many such barriers. Any one of them is enough to bar the proposition not Q, that is, to
" show that Q logically follows from P.

. Proofs = computation traces. PROLOG users think of the various barriers individually,
i as the different results of many (small) computations caused by the submission of t+o
' query Q in the context of P. However, only the answer A, in each barrier is actually of

immediate interest, while R; is simply the justification of that answer. Thus a PROLOG

transaction has the overall form

PR s S P g g 8 :

"
P IV f'-f MLhA) "q\
o zg-f- RN :"‘W*, !
‘\ - N
Do) 0. 'n"'q'l _'l.l!":‘! >

Sorr,

A

U\ user P
4N .
N machine ok

:f: user is there an x such that C(x)?
'ﬂ, machine yes: x = A,
| ‘
E_’, user why?
:,: machine because R,
< user any others?
b,
oy machine yes: x=A,
,]

" i
' 5 user any others?

Y
]

:;2 where the sequence of requests for further answers may eventually end with the
o exchange
k2

®
user any others?

E’. machine no

-

"n
‘ ' or may continue indefinitely (because there are infinitely many answers). The machine
b
:::' may even silently pursue its search for "one more" answer for ever in vain, if there are
e
:::; no more answers but no way of knowing that this is so.
"
3 ' |
v How does that work in LOGLISP? LOGLISP users, on the other hand, think of the set
j-‘ of barriers
" { A;because R, |i=1,...,}
_‘. collectively as the (only) result of the single (large) computation caused by the same
e submission. Thus a LOGLISP transaction typically has the following overall form
)
)

' user P
o machine ok
:’ user whatis {x|C(x)}?
7 machine itis{ Aq,.... AL}

.m ®:

)
o o R L o TR N S A, -f"’V" S "‘-" % 3 AT AR AT T R A A R TR TR R TR T A TR
e b "U' "&'{ "a".j‘,'_z " AN yop :' eIy %:J-}' ‘:“..': v -fj":r: T T e S Y
Sy W i A" A N N RN A I e A N A A A A
1. . .‘ ‘\n).\‘ a’ » f: 5’\ T R A T A L S S RS DS YAIA YA S
hehe, ."hl’ ‘l'.’t”." AW ANA Y, :“", "‘l' ."i'c v ':'0 p NP l..{» ‘F * ' . ‘Q. e % } < W 'Mﬁfhh:\i\;

i T " s >
¢

: user why A, ?

machine because R,

when there are only finitely many answers (and in the special case that there are no
answers the empty set { } would be returned). If there are infinitely many answers, a
LOGLISP interpreter cannot (of course!) finish computing out the explicitly listed set of

| them all, and instead might be arranged to respond
8 machine itis {Aq ... Aj}uB

D)
i where B is a "remainder" expression describing the (infinite) set of remaining answers.

? Proofs and traces normally needed only to remove doubts or locate errors. The proct
X (or justification) component R in a barrier {A because R) is the analog, for a logica!
! computation, of the trace of an ordinary computation. As such, it is not normally wantca

as part of the output, but is held in reserve in case the answer component A shouic v

thought to need justification. This could be very important, for example, in the case of
A an expert system whose answers are either costly, or risky, or in some other way call
for a supporting rationale. As we shall see, in the SUPER system as we presently
envisage it, the proof components are not preserved and hence are not available to the
user. This is because the SUPER process of reduction is "inhumanly" parallel in
nature and its mere history would in general be of little use as an epistemological
crutch.

: Point of computation is to get output or to achieve effect. In general, the purpose of a
computation is to obtain an output (or to achieve some effect, an output in a broader
but still legitimate sense). Our reason for doing the computation is not normally to get
its trace. Similarly, in logic, the main reason for doing a proof is not so much to have

the proof itself as to be properly convinced of the truth of its conclusion.

Constructive proofs as natural source of outputs. A proof may or may not be

constructive in character. A constructive proof is one which a construction is supplied

. » 1 -. e Y '-\1 L R TS T TR Wi Pt N T T I e i T S P TSN e e \’__.:
p h "N “’*‘%‘V ‘\ e '\" 'P " J'\‘ e \'\"'\.' AU AL g RN N -.'- AT AT,
'. Loyl .h.\‘ ')' .(\ ,‘.A‘_(SN .r\.-\.r I AL A A A \z\.-\-\ _.' S

- PATITREAISIR o NN

Cd

N (' N - > e N _':" IS S ..
o --"3' RS e R e R e R

W N TN Oy N T N T T R T A o T X W A O W W R W T~ @V~ Y P~ g~ N TR ~Tw PN - wE -

tor any object which is asserted to exist in the course of the proof. A nonconstructive
proof that a certain kind of object exists is an argument which manages to convince its
user of this by indirect means short of actually constructing such an object. Whatever
their desirability in mathematics may be thought to be, constructive proofs are
absolutely indispensable in logical computing. But we value the constructive proof
less because it is a proof and more because it provides, as a sice effect of its main

task, an answer to the query we submitted.

Logic programming. Although the phrase "logic programming” has coma to te
associated mainly with PROLOG and its underlying Horn clause resolution logic, the
concept is a more general one and can be discerned, for example, in LISP, SASL.

and KRC. Inthose systems, however, the underlying logic is different. It is the equality

logic of "substituting equals for equals to get equals" combined with that of abstracting

and instantiating syntactic patterns using Church's lambda notaticn.

Definitions, axioms. The assertions in a logic program are often thcught of as
definitions, or axioms. But we can alsc think of a functional program in the same way.
For example, the equation

factorial = (Y AfAnif (zerop n)then 1 else {times n (f (subt1 n))))
is trieught of as defining the tactorial function, as indeed it does in the sense that, with
this equation and the eqguations

YF = F(YF);

iftruethen AelseB = A; if falsethen Aelse B = B;

zerop 0 = ftrue; zerop 1= false;, zerop2 =false; etc.,

times = Amn if (zerop m) then 0 else (plus n (times (sub1 m) n));
plus = iminif (zerop m) then n else (add1 (plus (sub1m)n))
(add10) = 1, (add1 1) = 2, (add1 2) = 3, etc.,
(sub11) =0; (sub12)=1; (sub1 3) = 2; etc.,

as axioms, the beta- and delta-contraction rules allow us to make deductions like
(factorial 13) =...= 6227020800.

A Rl

q'l

-

R RS Y e APk

P>y

NAOYSELR

w
PAE Y

XY

Of course, in practice we cannot actually store infinitely many defining equations for
add1, sub1, zerop, and the like, and instead we simulate this by suitable algorithms

based on the positional notation for the numerals, and we normally treat the functions

LS | PP ars T » W]

plus and times in a similar fashion.

Function calls = theorems to be proved. Within this general logical framework, ther ™
is possible to explain (and indeed, !> execute) funclion calls - like the call

(facteria! 13)

by~ -~ - . ' . - -~ - - - -~
7L E - Dy MANID 00w GaTUCL e wWRLRe Lleps D0g conttr REATERTUE N
) LSS
~m e~ N SR o mm s \ - . [P e
Snthe assetors alinsdel vUone, 7 as anoms) exnLot) e mpiets no oo
- - VA “ s 4 R RN N 4 £ ~ o~ N Lo S B Yoo e
Joagram. We are oo arsustumed o s moda of reasnrag (or contunitoot re

co rotthink ¢f it a: a speaies JF ing.cal deduction, or ihesrem proving . Eoao i 0F
theorem proved above is the eguation

(factorial 13) = 6227020800
and the proof is the entire trace of tiie ccmputation of the output 6227020800 irgm tne
input (factorial 13). We can also think of the entire computation as a gonstructive proo!
of the general theorem (guery)

there is an n such that (factorial 13) = n
and the computation simply a response to a user's request o prove this propositian,
The proot is made, and, being constructive, carries along with it the supporin:
construction that n = 6227020800, which provides the output. The prcof itself is
discarded or ignored In fact in this example, which is of courze theoretica! arao
pedanocgical, the pure proof is an enormously large thing because of the pure
treatment of arithmetical functions and predicates. If w2 build these in and
algerithmically exploit the positional notation for the numerals in the usual way, ther
intermediate steps involving such function calls as the expression (times 7 720) wcu'd
be immediate, one-step transactions as if the equation

(times 7 720) = 5040

were one of the exioms.

;' Outputs = supporting constructions. The idea that in such logical reconstructions of
:2 computations the outputs are obtained from the supporting constructions of proofs of
propositions in existential form is a basic one in our view of general logic programming
:' in all its varieties. Functional programming, as in LISP and all its lambda-calculus
3;4 based cousins (SASL, KRC, ML, even APL, et al.), is no different in this respect from
é- relational programming, as in PROLOG, where this aspect of the logical reconstruction
) is much more obvious (being hardly disguised at all). PROLOG's origins in mechanical
\-r theorem proving are very much worn on its sleeve. In our efforts to develop a uniform
::::3: concept of logic programming which comfortably fits both the LISP-like and
) N PROLOG-like paradigms, we have found that it is the "denotation preserving” scheme
: : of equational deduction, or reduction, for short, which serves best to capture both. If we
N regard a PROLOG:-like computation as a succession of transformations applied to a
-t‘-:u series of set expressions, without changing the set denoted by them, we have the
® same basic paradigm as in the LISP-like case. So we think of PROLOG-like
" computations as
- {(Xx1C(X) }=..={A,....A } UB
with the "remainder” B often being the expression {} (in case of finite set outputs) but
;g: in general being an expression capable of more development (possibly infinitely much
;:::E': more) by further transformations. This change of viewpoint can be made smoother by
-i“ following the suggestion of Keith Clark that the set of n definite clauses in one's
_.‘ prcgram which collectively define a given relation symbol R - in the sense that *heir
: conclusions all have the form R(t;...t,) - can be reorganized into a single equational '
definition of R
.‘v R = A (xq...%) (Gyor...or G)
i
_ ﬂ-. that is to say (equivalently)
.‘: V (x4..%) [R(xy..x) iff (Gyor..or G,)] (*)
B \, where each G, expresses the content of the ith clause as follows. If the ith clause is
e
;E‘ Y (y1.-¥m) if (M;and...and M) then R(t..t)
. then G; is
b
i :
i
@
'f-:':: :::; E--. : ﬁ?f": ;;;;E\.ﬂ: 9 f._ » :,\{::x; ;r; w:.::: \5\\.-:.‘\.:2\,» .V:::::-:'{'\'"i"\'.'_:,:.:S;T‘.:' :, _:. 1
N A .s'_hfi. .'."“."'. A ‘-. ._ "(‘ ; N s ; -

............

'

f:f 3(Yy...¥m) (X4 =t, and ...and x, =t, and M, and ...and Mq). *)

)

Clark's idea is called “"completion of the knowledge base”. This is because, strictly

‘\. speaking, the conjunction of the n clauses is logically equivalent not to (*) above, but

- only to the weaker assertion

v Y (xq..x) [R{xq ..x) if (Gyor...or Gp)] (***

9 with merely the if, rather than the strenger iff. The stronger assertion (*) provides a
means of inferring negated R-sentences, since {(*) iz logically equivalent tc the
asserion

3 T Xy X [netfoxy L x) iff (notGy and . and notG)]

\

o v.more each comparen notQ, of wnose right hand side is (negating (*7) above)

(Y Yy ym if %y =ty and ..and x, =1,)then not (M, and ...and Mq),

:j This shows that in order to prove notR(x4...x,) it is necessary to prove n di*nct

\ universally quantified theorems. This is why the "negation as failure™ principle in

(PROLOG is so full of subtleties: the proof method used in PROLOG is in general not

::' designed to prove such theorems.

#

-

y For the purposes of our present discussion we do not need to pursue this point further.

3 We are interested only in the idea of defining a relation R by means of an equation

LN

A R = k{x4..x)Gy or...or G,]

L

‘N just as we define a function F by means of an equation

F =).(X1...Xk) B.
- It is this idea which makes it possible for us to combine relational with functional

programming in the SUPER language and reduction system.

SASL, KRC based on reduction; LISP should be but is not. David Turner's well known

functional programming systems SASL and KRC are reduction systems. This means

LSRRG TN . A AR T T nT R AT R \' \‘_-"_ WO N
R RO ‘.~' o~ ._-x-;,.*._-' a --d\}-.*v\ﬁ.

e "-:"'E@% "E&h"‘ u"\ﬂ'_-\. rt&;“a "2

SRIRE 3 5%

T TN T T ST R T T Y W W w ey w w w —y

that they are logic programming systems based on the idea of proofs as equational
deductions. The user types in an expression A as input, and after some work by the
machine receives an expression B as output. The machine has reduced A to B, and
thereby (as a side effect, so to speak) proved the equation A = B. The idea of
reduction is of great importance but is really a very simple one - far simpler than the
elaborate alternative idea based on denotational semantics and evaluation.

10

N
Evie

i

f‘g}:}: CHAPTER 1. THE SUPER LANGUAGE.

&:: In this chapter we review the general logical background and underlying principles of
*-_E:; the SUPER language.

b in

ii;.}., The SUPER language: expressions and contractions. The SUPER language contains
:‘%‘,‘ both the predicate calculus and the A-calculus. Formally, it is a collection of
E::. expressions, tegether withs some (infoiniial) conventions which give them meaning and
, some (fcrmal) inference rules, calied gontractions, which make it pesstie tC¢ do
:Zr_." deductive reasoning and computation with the expressions.

o

fu. A SUPER expression is either o symbo!l, cr an gbstraction. or a combrnation. Ev- 1y
e expression has an arity, which is a ncnnegative integer.

v

::I Symbols. Symbols are words of one or more characters; for example

WA

éﬂ-“' not, and, or, some, true, false,

N S, K, 1, Y, 34, -23.6, plus,

" X, y, zorro, a, banana, P, QUERY,

2

o ; are symbols. It is part of the definition of each symbol that it is either a function symbol
"‘ ": or a relation symbol, that it is either constant or yariable, and that it has a given arity.
,_ Constants are written in bold style. Variables are written in plain style.

oo

sy

Zé" Abstractions. An abstraction has a bound variabie, which is a variable, and a body, B,
which is an expression. lts arity is one larger than that of B.

R

EE'-E Combinations. A combination has an gperator F of positive arity and an gperand A,
.‘fr::I both of which are expressions. Its arity is one less than that of F. If F is an abstraction
:,_' with bound variable V then the arities of V and A must be the same.

S 11

o

-~

.

P e
R Tt e R e e A e A A R AN

Free and bound occurrences of variables. An occurrence of a variable V in an
expression E is a bound occurrence ot V in E if and only if it is in a subexpression of E
which is an abstraction whose bound variable is V (and otherwise it is a free

occurrence of vV in E).

Abstract vs. concrete syntax . Trc above syntax is abstract: it does not specify any
particular concrete representation for expressions, anc is in fact compatible with a wide
variety of particular ways of writing or representing them. We will be concerned with

two main ways of representing expressions: as strings and as graphs.

String representation. The string representation of an expression E is defined as

follows:
« if Eis asymbolthen the string representation of E is E itself;

» if Eis an abstraction with bound variable V and body B, then the string

representation of E consists of the lower case greek letter A, followed by

the symbol V, followed by the string representation of B;

« if E is a combination with operator F and cperand A, then the string

representation of E consists of the lower case greek letter a, followed

by the string representation of F, followed by the string representation of A.

There is in addition a wide variety of "sugared" (Landin [21]) ways of writing and
displaying expressions, all representing the same underlying abstract syntax. For

example the "beta-redex”, whose string representation is

aixB A

can also be (and most often is) written
(AxB)A

without the a, using juxtaposition, supplemented by parentheses if necessary, to
12

............

. -
-

-

N Sl
ZREE '-f‘\'ﬂ.:".
2 e

LAY

</ U . S W EW W v ’ Calitalin e diat e’ i iaf el Nl 10 A4 4 "Rl 0 A S0 Ve 0 R A A=A e it |

-
RS
".: indicate combinations; but it can also be written in the let notation
- let x be A In B
" and in the where notation
‘ﬁ;s B where x = A.
;
%
:!-l Thus aFaGX can be written as F(GX), and aaFGX as (FG)X or even as FGX
‘ (following a convention of "association to the left"). Since iterated combinations
:? (combinations whose operators are combinations, etc.) are common we shali often
:‘: write " as an abbreviation for a succassicn oi n o's. Chapter 3 cf Volume 2 discus o

o the many such "sweetened” syntactic variations which are rezognized by | NF-F e
W
0 Graph representation. Insice he SUPER maching, and in the LNF-Flus inte ¢
’. express:ions are represented by rcoted dirzcted graphs, similar to LISP S-express -
.,-;? which may have both confluences ("sharing”) and cycles, and may ever ¢

‘-" redundant nodes inaccessible from the roct ("garbage”). These graphs are discuss @
'-Z‘f: in more detail in Chapter 2 and Chapter 3 of the present volume, and throcughout
..{_ Volume 2.

N

o

«,- Logical constants. Certain constant symbols are called logical constants and have a
' fixed role in the language. The following lIcgical constants are relation symbols:

-..

_ .r .' .’-"J‘ ‘.r"'.r"‘.)-"'.r“r PN :)-,'_"J""f e o

*--\x‘-"_-:w: -_--.\- -- i
L) Lo »
e\‘;‘m R i«.“"’ - }“f‘fx i :‘i *QI

Expression structure: heads and arguments. The string notation is especially useful for

revealing certain structurai features of expressions. Every expression E has a structure

less

pairp

numerals
sum
difference
product
quotient
head

tail

which in the string representation has the form

E

for some m 2 0, and expressions H, A,, ..
has arity > m. H is called the head of E, and A, is called the " argument of E. Clearly, if

m = arity of H then the arity of E is 0. Since H is not a combination it must be either a

= a™HA, ...

symbol or an abstraction.

A

m

AL such that H is not a combination and

14

i e & W W VY NN W W W WP S D Y B B PR R PR

2Bl Bl B

a5 X

A a A R

.

AN LAY, \'
.c“ﬂ’v ﬁ ' .\.’
RGOS ?a."t O ﬂ'\" *"

I‘

Predicates. Sentences. A symbolis a predicate if and only if it is a relation symbol. An
abstraction is a predicate if and only if its body is a predicate. Predicates of arity 0 are
sentences. The general idea is that if P is a predicate of arity n then all O-ary

expressions of the form

a'PA, ... A

n
are sentences, and conversely that every sentence is a C-ary expressicn of that form,
Notice that in particular the lcgica' constants true and false are sertences Th, arc

alen ralicd ¢ 1‘}1 Vf’ i

‘‘‘‘ L ¥ii Al s

Plot ol aorranoog ™o ot S@ran T34, cas oS alne The Case 1 catort a7 pn
P N . - Loy [S ce o . ~ iy o A LI Ll A
Tieantes ¢ not e Lp ALl oo g eystem, and so the ¢ Sunaaii are o

<~ F | Yy~ : -~ - ~ - -
express.on might ve neanad Sl 0 Liemseives Dt not apprepriats i Mo rihic:

example, the expression « plus true 3 is a well-formed expression as far as @
are concerned but lacks semantic significance (unless we extend the definition of plus

beyond its customary domain).

The combination «’some n P is a sentence. It makes sense only if P is an n-ary

predicate, in which case it expresses the proposition that P applies to at least one

n-tuple of things. Intuitively, a“some n P expresses the same proposition as the more

familiar formula 3V,... V(P V...V

o), where V...V -are any n distinct variables not

occurring free in P.

Tuple notation for abstractions and set notation for predicates. An abstraction whose

string representation is
Az,...Az B

where the z are distinct variables. may also be written 'n the "tuple™ notation

Az, ..2,)B

l et g A4 A A'A A gtn Sh Ah g SANAh otk Sl Bad el o 2o 2 L aae and mas oan oAb oue oan g g

and if B is a sentence, the abstraction (which is therefore a predicate) may also be

written in the "set" notations

{(zy...2) 1B}, setof (z,. .. z,) B.

Sets and predicates considered the same. The SUPER language does not distinguish
between predicates and sets. It treats these notions as alternative but equivalent
versions of the same notion. However, for reasons which wiil become clearer in the
sequel, we will make "official” use of the alternative setof notation under certain

circumstances.

Conjunctions, disjunctions, negations. The sentence true is (also known as) the

empty conjunction. A nonempty conjunction is a sentence of the form

o?andA, ... a®andA true

ettainibes St culonCot 2 20 M Rkl 3C £ K Ko e bh LA M > BEM (2 s "o 2’23 2 B bw , _LJ

for some n = 1, where the A, are sentences, the conjuncts of the conjunction. If n =1

the conjunction may be identified with its (only) conjunct.

i

The sentence false is (also known as) the empty disjunction. A nonempty disjungtion
1s a sentence of the form

oorA, . .. oorA false
for some n 2> 1, where the A are sentences, the disjuncts of the disjunction. If n = 1 the

disjunction may be identified with its (only) disjunct.

A nega‘tion is a sentence of the form

anotA

where A is a sentence.

Existential quantifications. Sentences of the form a®some n Ax,...Ax,B may be written

3x,...x,B.

n

16

« .-\f,,_i\.-r.\m\‘;w s
RN AT

e
LT SN
“ Y w N
™ -.‘.i\‘(‘h.

M ;
Da o
1:‘ ;j
b Atomic sentences, equations, terms. Consider a 0-ary expression E of the form g
-:: :“
% o"HA, ... A, j
i for some n 2 0, (where the head H of the expression is therefore n-ary). When E is a)
_: sentence we shall be particularly concerned with the case when the H is an

-, abstraction, or a symbol other than and, or, not, or some (that is to say, with sentences

E

other than conjunctions, disjunctions, negations and quantifications). E may be

’ written as the "term”

) ‘n

» HA,, ..., A,).

A

z When its H is not an abstraction (and :s therefore a symbol) E is calied a~ atgnig

expressicn, and if E is a sentence, an atomic sentence. When in particular n = 2 anc M

K, 3 the censtant equals, E is also caliea an equation.

3

An atomic expression «?HAB whose head is 2-ary may also be written in th2 iriv

. notation

2 AHB
"' (writing the head between the two arguments) and in particular an equation may be

- written

- A =B.

K A-normal form. A fundamentally important notion in the theory and applications of

" SUPER is that of A-normal form. An expression is said to be in A-normal form, or to be

QY

: a A-normal expression, if it contains no subexpressions of either of the following forms:

Y - «AVBA (a "beta-redex”)

R

)

» « AVaMV (an "eta-redex")

l"

q where M is an expression not containing free occurrences of the variable V. An
o

\ expression which is not in A-normal form can often be transformed into an equivalent
vy A-normal one by persistently applying the operation of A-contraction (see immediately
g7
\ below) until no redexes of either kind remain.
17
4
o A e G S A N A =Y ol y N IRACANLOX
R S Sl St w&?*“":, : RN :»:-:»:;t;v
) n : A - \ L S LY
R S SRR S&Mﬁnﬁ’i‘»‘g AERALAHL RGN N0

\ S gl

¥s 821 s & M)

o)
"l ei NV A DI Y &

A AN

A AV .

) g0 "l
Wy .l:.“ - 1.0” .‘.‘:.’\‘q".n .“Q.’I.

A-contractions and A-computations. For every beta-redex

oAVBA

there is a corresponding "beta-contractum”, namely the expression obtained by
substituting the expression A for each free occurrence of the variable V in B. For every
eta-redex

AVaMV
there is a corresponding "eta-contractum”, namely the expression M. A A-contraction

operation can be performed on any expression E which is not in A-normal form, by
identifying a set of occurrences of beta- or eta-redexes in E and replacing each of

them with an occurrence of its corresponding contractum. Since in general a

non-A-normal expression may have n such redexes, it may be A-contracted in 2" ways.

A L-computation starting with E is then a (possibly infinite) sequence
E1, E2, s ey

of expressions in which E, is E, and each expression after the first is obtained by
a-contracting its predecessor. The A-computation is complete if it is finite and its last
expressfoh is A-normal. All complete A-computations starting with an expression E end
with essentially the same expression, which is called the A-ncrmal form of E. Th s
means, roughly, that we obtain the A-normal form of E by choosing successive

A-contractions in any way we like, until no further A-contractions are possible (the

Church-Rosser property). More exactly, we have to make the choices so as to avoid

nonterminating computations. This can always be done, provided that a complete

computation exists, for example by always contracting the leftmost redex in E; to get

E..1- A-computation is an example of computation viewed as the reduction of

expressions to normal form.

" q \.
\’N‘&'\. M A
N P!
..". .l.‘

v
bl Aot Ade e e Safe il Sull Bak db 8 & A A 0 atl aVa L0a’ 0B _aa _ha aa. 2os g NN W wTWyw

Normal forms in general. A A-reduction machine is a machine which accepts an

expression as nput and returns its A-normal form as output. Presumably, the

machine's design is based on some particular algorithm for systematically constructing

a complete A-computation starting with a given expression as input (say, the leftmost
redex algorithm mentioned above). In this report we discuss a somewhat more

complicated reduction machine, which carries out SUPER-computations rather than

r-computations. SUPER-computaticns involve 43 tinds of recdex contraction, wh.ch cre
cdsplayed in Figure 1. One cf them number 1V is eta-co~* a2, but beta-cotrct o
1> not among them. in s place are contractiors {1 throuah 20) whicn coflective’y ~ oov

e same effect.

v«

O
.

Rk oa A% St gt Db call Sad Sl Sop sok Sad Sag 4.8 &8 & &) e ' At oA

R

e

[E TR

A

s

NG CTE T v ® W w . e o= oo

REDEX CONTRACTUM REMARKS
1 Ax(F x) F x not free in F
§ S(F x) W axF x freein F
X |
4 xC KC x not frea in C
5 Ax(FA) S AxF AxA x free in both F and A
6 Ax(FA) CMxFA x free in F but not in A
7 Ax(FA) B F axA x freein Abut notin F
g gf(—'BXFYG . FYX F nct of the form (B C D)
) CFGX
10 CWFXY WI(FY)X
:; gi?a)é;x) F(GX) G not of the form (B C D)
BFGX
13 BWFGX W (F (G X))
5 SErox Srax |
SFGX
1&73 if;((ix (FX)(GX) F not of the form (B C D))
. X
18 IX X
"~
: NN 19 WFX FXX
v :‘. 20 YF F(Y F)
' 21 head (pair A B) A
.\.:'_. 22 all (palr AB) B
Yy 23 palrp (pair AB) true
[) : 24 pairp X false X not of the formi (palr A B)
. ~::. 25 sumnm the sum: n+m n and m both numerals
R 26 productnm the product: nxm !
Y, 27 difference nm the difference: n-m :
h ;‘; 28 quotientnm the quotient: n+m :
| 29 lessnm the truth value: n<m T
- EO grzater nxm the truth value: n>m n and m both numera's
E i and true X
":‘._: " andfalse X faise
; 'q.:-_ 33 ortrueX true
Lo 34 orfalse X X
7, 35 nottrue false
) 35 notialse true
s 37 iftrue XY X
:) 38 lffalsa XY Y
-.":R 33 equals X X true
w
A 40 equalsXY false X and Y distinct constants
:\.&: 41 equals FAGB and (equals = C) (equals A B) F. G both ccnstructions
. 42 and(or AB)C: andC (or AB) or(and AC) (and B C}; or (and C A) (and C B)
,::::. 43 and(and AB)C and A (and B C)
;:.. 44 or(orAB)C or AforBC)
‘:‘.::: 4? and A (and (soma n Q} B) and (some n Q) (and A B) A an atom
‘.::..: 45 3x4 XA A Ais one of true, false
VA Z; gx1...xm(orAB) or (3xy..x A) (Ixy...x mB)
®. Xy...X(and (some n Q) B) Xy X2y 2 aand (Q z1 ..z} B)
WV 49 3x,..x_C IXg X (X c " Ci i ' !
o 1 Xm 1% 1+\"'Xm Is a conjunction with one
v of (equals x;T), (equals T X,)
:.V‘.:} as a conjunct, and C'is C
: ;,’,Q with T for x; everywhere
LN FIGURE 1
o 20
o
7
5
.
@4

\\ﬂ A T~ by
SN “*‘w R
< \"-w_~ "'

5f' , % e
R AN A A RS
::5:'20‘:‘:.. . *&*‘. “- (.(\.(\:",f"\n;\,ﬁ' ‘».’,\ “}-.‘,\‘_fh,

The SUPER machine, underneath all its various trappings, is just a redex remover. Its

repertoire consists of the 49 redex patterns shown in Figure 3, each one with its own
characteristic contraction. The SUPER machine's contraction algorithm is simple to
state but complicated to perform:

to obtain E; ,, identify all redexes in E; and contract them.

This is known as full contracticri, and represents the maximum rate of reducticn that is

logically possible.

To expiain the SUPER langoage. then, we must discuss these contractione and

7. discrbe their intended joint wifect.
e
'}:
o » 3 . e
E:; Delta-contractions 7o bt=gin vih, there are many redexas typified by arithmetica’ «¢
@ . .
"y logical expressions such as
B.-
. sum 54 653, and true false,
‘;:','; whose corresponding coniracta are constant symbols; in this case,
{ 707, false,
e . . "
A by contractions 25 and 31, respectively. These redex patterns are all traditionally
S
:;~ classified as "delta-redexes"” (this greek-letter terminclogy is due to Curry).
~
0
_ The general idea is that a delta redex is a 0-ary combination
o
L8 i n
a'FC,...C,
S
pre whose head F and arguments C,, ..., C_ are all constant symbols, and that there is
L
'“ an associated aigorithm to construct a constant symbol C as its corresponding
D)
e contractum.
o~
o
o Constructors and data structures. Expressions in normal form are by no means always
3
- single symbols. The example of traditional numerical computation (which usually does
% end in a numeral or a truth value, the "result” of the computation) is not typical. For
-'.5
." example, if we compute the inverse of a matrix, the result is a matrix, and this is an
b
.’-_:
NN 21
e
1 HL
.,.'!
L T g R
o e, S e

expression more complicated than a single numeral, or scalar. Similarly, in aenerne

N R
~— DR

SUPER computation might end witi, an expresaicn more glaborato tros a ¢

However, (by dedinition) (e ovriooce o

Mo a

the combinations winca it deos con' i

Heatiar o that oot oply eaps f
wcangr s m i vy B

Syt
I TN BN

Toa commor e JUIGNOUT cductinn comouiroon 3 e n

Sl = Sl o
exgretcion dongtos tive anme chiost all we fue dommg in carny.on out e coen oy
3,80 10 speak, exchinging orn name of that ebject for another oo Eonry o
more elaborato oo Cimrple constant symbois, tor example, the Lot whose Dt el
55 and wnose -cend element is 23 is i o diformithe expresse

[6 23}

and is in raw SUPER the combination

«° pair 6 ¢° pair 23 nil

woich contains no redexcs. Itis & data-od o The 2-ary conoiant pair o thereinr

called a gconstructor rather than a furgtor, whict ie —2 ore than v Jay that corens oo

cftia t>r m

S A0S LS Dol D aneitne W

[A

Corodact, O Trrerce, gquotiont e

SUPER computation = getting rid of all SUPER redexes. Toany it s oweran o

of the SUPER langunge, we now mucl lcok mere c.osely at the other kinds of redex.

which must be absent from an expressicn in order that it shouid be SUPER-normal.

namely, those of contractions 41 through 49. It is these remaining contractions which
22

R A A i Sl = At S N it e S M b S e el e Al SRl PAR ol i o o el caa oy ab -g 'v:!_‘:v:'r'j

constitute much of the novel aspect of the SUPER language. In order to understand
them we must next examine in more detail the structure and meaning of Horn
predicates.

Goal clauses and Horn predicates. A goal clause is a sentence of the form
2x,..%.C
where k 2 0, the x, are distinct variables. and C is a conjunction whese conjuncts (if it

Is none™otyt are all atemic sentences. (When k = 0 then we omit the symbol 3)

A Hern predcate is a predicate of thz form

where the z are cistinct variabi~s and D s a disjunciion whose d'-,uncts {7+~

nonempty; are ail goal clauses.

For example, the following is a Hern Predicate:

Mabc) (or (and (equals a nil) (and(equals b c) true))

(or I xyw (and (equals a (pair x y))
(and (equals c (pair x w))
(and (append y b w) true)))
false)).

SUPER's equivalent of PROLOG's Horn clause definitions. Inthe SUPER system. in
order to define a k-ary constant R as standing for a k-ary relation in the manner of
PROLOG or LOGLISP, one gssers a "Horn equation”

R = Az, ..z)[G,or...or G]

(In LNF-Plus one gets the same effact by a different transaction: see Volume 3, 3.2

v \};-"‘\(‘f.'f\f\;\f LN -:.;".;)f‘.;-"‘;-',;u'l:-f,:-‘ {J‘,;*,:.‘{.'\.vf‘.:.-‘;-'.‘-.'\:-':-'\'- ;."' Sl .
4 Ly W -'..-".‘v'_.n‘ _J'\-‘ s ~'\-“:-'_ B ADAGAT A
» - .\..N"‘ SR (‘$"~;d"‘ ."_.\h-;’..:"‘-‘.\‘. -..~..‘_ -_.\._‘ .
A 2 e S

rinal).

¢
NN

8]
v

1 has been defined by the above Ho:

B < L

o - - - ©

pa 2 N i

- <

. [QV}
- s

- [>

nd) -—

o -)

e ko) ‘ <

- - , o 2

o5 @ T &

R [:

o . ’ -

2 0Nt
.
T
AL
\

(/\1

1ot
Y
%

f

X

Horn Clauses for how it s actually done at the LNF -Plus

whose predicate 15 the relation symbol R«

) ~
I @
L &

Sh

Pd
b

-

L oy
lr.\"\:l

u‘fd’ o)

equation. (B and C are conjunctions of atomic sentences).

Then the contraction of the redex R to R, followed by the further contractions which
"apply R toits arguments”, transforms the goal clause (*) to

3y,...y, (B and (G'yor...or G)andC) ")
where G', is the result of substituting A,...A, for z,..z, inG,, i=1,...,n. Nctethat (*7)

is no longer a goal clause: however, it will be transformed to a disjunction of goal
clauses under the pressure of the SUPER contractions 42 - 48. Namely, contraction 42

will "push and's throcugh or's" to cause ") to beceme

Jy...y,{ (BandG andC) or...or (Band G, andC))

and contraction 47 vl "pusn s throuch or's" to cause it to b.come

dy,..y,(B anc G anc O) or .oor Ty,..y,(Band G’ and C).
Finally, the existential quantifier pretixes of each G', will be pulled ouiside the aac

contractions 45 and 48, to yield

LT

3y,...¥,Wy..W,(B and Hyand C) or...or 3y,...y,w;..w(BandH ,and C) (***]

where G;is 3w,...w H. The expression (***) is a disjunction of goal clauses.

AR A2

This overali transformation of (*) to {***) corresponds to using each clause in turn in the
PROLOG or LOGLISP definition of R to eliminate g goal from (*) when it is an atomic

sentence R(A,. .. Ay).

We next discuss how to eliminate a goal in a goal clause when it is an equation. It is
this kind of goal predicate which we introduce when we perform goal elimination in

the way just described.

The elimination of equations from goal clauses. We consider a goal clause having

one of the forms

25

Ex

Lo and

mply S oo ey

t

append - ar

and . and)
»ooond Towlhiare 2

' e LR
bre
(or ‘and equals a nil; (and{equals b c) true))
(or (some 3 rxryiw (and (equals a (pair x y))

26
LR

x"\. -\,’\\u x\.‘
d‘r .'-

-
\\\\x‘"

-_._-

.\

Qn"&\.n' IAM.;&\ &E

- ‘ -"'
.« '\.\ "
Lafaint

i

L

! -

S TR EL

5 S e

y

- e .

£ 52

ooy b NS

.
T e

-

’ Y ol aliie Rt dat et e’ Aafi Sl el -l Y AN A N U A S ANe ke - A0 SR Ba i eal unit vl uad Al el
p G
'w

(and (equals ¢ (pair x w))
(and (append y b w) true))))
false))

The introduction of this definition corresponds to asserting the pair of Horn clauses

Vx((append nil x x) «)
vx,y.z,w((append (pair x y} z (pair x w)) « (appendy z w)).

The definiens reduces to the expression

B (B or; and (C equals nil}) (C (€ and) equals true))
_Ej some 3)) S'C (B B (B (S E)) 3 and} equals) pair)

(\C CB 2B S B and equals: pair)))
(€ (C (C «nd))iC append) truej;

a9
XXX

1e B

which we will abbreviaizc as APPEND. Thus we have introduced a new contio.
effect: but see below), whose redex is the constant "append" and whose cortrzcrum i<
the expression APPEND. This new contraction will cause any atomic sentence of the
form

(append ab ¢)
to be transtormed first into

(APPEND ab)

and thence into

Si (or (and (equals a nil) (and(equals b c) true)) (or (some 3 E) false))
i ..'f

N where E is

02

S: (S(B (S B) (B and (equals a)) pair)

:.' (CB(BS(Band (equals c)) pair)

(C (€ and) (C append b) true)))

27
IO A W A AT A T et AT O
X sﬁ"x‘j\"' . "_p.,_ vl e '\'x":".'_-.' e T ‘_'_-.:',- ; .

\f"‘ YOUN ;\-f:r.-".hz-'-.'r-"‘
aRnoues .:'Aﬂ-.wj\. .-ri:-.-. R R A

‘;-;-:f'
[
|
|
i
:
:
|
]

which is the normal form of the expression

PNl e
ARARRARS |

Axryrw (and (equals a (pair x y))
" (and (equals c (pair x w))
(and (append y b w) true;)).

Thus the aiomic sentence (append a b cibocomes aoie acenr e o hwo ooai ool

N e e v

as disiuncts.

% A 0 M BT TR A N S

NAL S
DR

- <o
3

e n e~}

PASANTS

_'\
N\

o~ /‘.D‘J'}
A e,
i
(
~

~

S

>

O

/

W Y

setot (p ot (or «and equals p il and equals - nair ¢ pair O il truey

a2,

or tand (equals popair sl and coums q par T mlb true

LY

““‘l

tor jand (equals p ipaw 1 oopair 2 nil and iequals o nil trun false

i,
72 ¢

which can then be sugared *or oulpLt 15, oy 1o e Cloe o g

» s

-

o5

{2y, re2). r2yq))

oy

28

et oL e e w)
AL

»
- A

Xk

5495 %

o

e el A A it e et it il it A Aait et Bkl Balk e Sf Sad Aol Bk At Bob Bl Bt Aol it Ad B B 2 b |
E .
< i

or whatever other surface syntax may be preferred. As can be seen, the final raw
SUPER expression contains no redexes and is a "solved” Horn predicate: one whose
disjuncts contain no existential quantifiers and whose goals are equations giving the
components of each "solution". The use of the setof notation instead of the A-notation is
to prevent contractions 1 though 7 from transforming the variables p and q away and
losing the logical structure in terms of which the logical contractions achieve the final
solved form.

T

[n the next chapter we examine i incre detail how the contractions are effected in the

graph representations of SUPER expreossions

LA 3 I T

R . B

R [N -
3 RN NN

. PP
L oo .

L2

s %

29 §

AL,

A a

ml

! -

£

AT

-

+ 7

v.' l.

. e

oL

.
L.t

A Ty——

X BeX
->

e

(2

Y

5

ey

X
Py
Py

::1

-

P'e I.\'
.Jl'}

- Yy l.‘ .
"-" 1\ :l'J

LA R RN
sl
'iz‘:,‘l."l ‘l " \

[d
'l

\ 1
S N Y
kb #13}&'

AR

v
»

TN
P

o
v
XX A

h A

Al

CHAPTER 2. GRAPH REDUCTION.

In the SUPER machine an expression is internally represented by a graph. A graph is
a system of nodes, all accessible from the root node of the system. Each node has a
unique address, and a very small memory which can contain the addresses ot other
nodes. A node B is accessible from a node A if either A is B, or {recursively) if some
node accessible from A contains the address of B. We shall make informal diagrams of
graphs and indicate that a node A contains the address of node B by drawing an arrow
from A to B.

Symbols. The representation of a symbol is a graph consisting of a single node which
which ccntains information specifying its arity, its kind (variable or constant, relational

cr functional), and which particular symbol of that kind it is.

Combinations. The rcot node of a combination is labelled by the greek letter a and
nirs two addrescns, an gperator address which i directly or indirectly that of the

et noce of its eperator. and an ¢perand address which is directly or indirectly that of

Pointers In the delinitions of combination and abstraction graphs we sgoke of an
acaress peing "directly or indirectly” that of the roct node of an expression. That wa=
because in addition to symbols, combinations and abstractions we have pointers. A
peinter conta'ns the address of the node which s s {arget. Pointers permit a system of
indirect addressing in graphs. A node directly addresses a ncde C if it contains the
address of C, and indirectly addresses C if it contains the address of a pointer the

target of which is C or indirectly addresses C. In diagrams of graphs a pointer is

represented as a node labelled by the sign V.

30

Existential quantifications. Prefixes. Quantifiers. Varlables. An existential quantification

is represented by a graph whose root is labelled by the existential quantifier sign 3,
and contains a matrix address, which directly or indirectly addresses the root node of
the matrix of the quantification, and a prefix address. The prefix consists of n guantifier
nodes, each of which addresses a distinct variable in the prefix of the quantification,
and the prefix address is the address of an arbitrary one of these nodes. These

quantifier nodes are linked into a ring: each quantifier node addresses the next one in

the ring. A quantifier node is labelled by the greek letter n. (If n = 0 the prefix iz en'p'y.
and the prefix address is null. The wheie quantificaticn expression is then equivalent 1o
its matrix). Each variabie rcde addresses the root node of the quantification. &r.d
ccrresponds to a distinct variable in the prefix of the quantification. For example, the
graph of the quantitication
IxyzB

has three quantifier nodes, one for each of x, y and z. Finally, throughout the matiix cf
the quantification, an occurrence of one of the variables is simply the address of the

variable node corresponding to that variable. For example, the existential

quantification

Ix y z (and (equals x y) (and (equals y z) (and (equals x z) true)))

is represented by the graph

DAY n"
£]

WY, ’f-&:,;\;‘b‘;.-:&;’ﬁ#?.-?dv*.-* NI

..............

T —— —
e
& \
3 Ty
l >z @ \\\
N TN e
o= o oL o —&
and « and and o
v v \
equals equals equals

The operand address of a combination cell is represented by a light arrow, and the

operator address by a dark arrow. Each quantifier node is labelied by n and
addresses its corresponding variable noca by a dark arrow, and the next quantifier in
the ring by a light arrow. The quantification node 2 idresses its matrix by a dark arrow
=1 {some node in) its prefix by a light arrow. Each variable in the prefix is actually
anonymous - its distinct address is what gives it its unigue identity. Thus, any other
three variables would do just as well in the diagram: this corresponds to the well
known fact that, in the ordinary linear notaticn, bound variables can be (with suitab'e
sateguards to avoid clashes and captures) relettered without changing either the
meaning or indeed the deep syntactic structure of the expression.

Motivation for the quantification representation. The reader may be puzzled at this

point to know why we have a second, special, graph representation for existential
quantifications. [s not the combination (some 3 AxAyAzB) the "official” expression, and

is not the notation 3xyzB merely sugar for it? Yes: nevertheless, inside the SUPER

machine we use both representations.

32

- > ": .\/‘--.‘ '.\ 7, (\ _'.r‘.,- :".
S N AN IR S AT N A I S S AL NSRRI
PO AN AN RN g NN S i A e NN IO M)
g » e r . R O S Y
ey .‘I’-. B A Y .“, o KaXuXaX Ot Sl A et ASLACA s WA v SN >

‘l.llz
ﬁrﬁt, Y

JTCY
AL

-

g

The reason is that in the SUPER machine we implement contractions as |oca]

operations carried out by small "nodule” processors, one for each node of the
expression graph; and in order to get correct glgbal behavior we need two different
(but semantically equivalent) syntactic representations of existential quantifications:

one in which bound variables are abstracted away in favor of combinators (the some

representation), and one in which they are not (the 3 representation). Contractions 45

through 49 are designed to exploit this dual representation.

Contraction 49. According to centraction 49, if the matrix C of a goal clause
3x,...x,C ")
contains an equation (equals x, T) or (equals T x;) as a goal, then (*) should be

contracted to the geal ciause

)
X, X4 X x,C

+1°

where the new matrix C' is the result of substituting T for x; throughout C and the new
prefix lacks the variable x,. Now on the face of it this is a very nonlocal operation.
There may be many occurrences of x; in C and the substitution operation must cause

each of them to become an occurrence of T. However, if we use the graph
representation just described, contraction 49 can be effected in a surprisingly local and

economical way.

It is not just the execution of the contraction which has a global character. The
detection of the 49-redex pattern (which must also be done by the nodule) also
appears to be a global process. The nodule playing the role of the root node of a
49-redex can be arbitrarily far away (in terms of addressing chains) from the equation,
and it is impossible (as far as we can tell) to contrive suitible local operations which
would detect the fact that it is a 49-redex and would then oring about the necessary
changes. Qur solution is to locate the center of the action not in the root nogdule of the
If in th le of th i

33

Consider the immediate “neighborhood” of the equation from the point of view of its
root node:
4:$:5:T where C is: Jra= ... = a=true
ciL=>2:xi——>1:3—>3:C a=Cy (f:> Ck
equals and and
2%
o (we suppose that the address of the 43-redex is 1, that of the variable node
S
g;l'{ corresponding to x, is 2, that of the matrix is 3, that of the equation is 4, and that of the
L7y expression T is 5).
The nodule at 4 detects that it is the equation of a 49-redex located at 1 as foilows. It
detects that it is an equation simply by seeing the constant equals two links down the
operator address chain; that one side of itself is a variable in the prefix of an existential
quantification in whose matrix it is itself a subexpression, by looking at nodes 2 and 1;
and that moreover the matrix is a conjunction cf which it is itself one of the conjuncts,
by having just received an 3(1) message from node 1 as described immediately below.
The entire 49-contraction is then effected by the following local change:
4:a = 5T
l T
a = 2:V
l
equals
Namely, the variable node asscciated with ¥, is changed to a pointer whose target is
the expression T. The quantifier node ccrresponding to x; immediately nctices that it is
now addressing a pointer instead of a variable and accordingly changes itseif to a
pointer addressing the next quantifier. In graphical form, this quantifier excision thus
consists of the quantfier node at (say) 6 changing itself from
", 6: n = 7: next quantifier
) G l
N
~ n
s 2:V 55T
(L.
T to
.';‘
e 34
) \.0_
5
\"
W
o4
“ . -, - . .
O { SRS RS OA TSNS W RN Al N APt " L NP PR R R oy \t;.ff,.‘ll.:n_,'-,",:'; NS '.-_'{_:.; AT AT RS A -:,4' - -I . _"‘.; o
A e e i

Tttt

R
a4

'<.-.;'x§¢ "

S
T oty

T
TR

<

Ps
>

L

AT
prys

@
sl

6: V — 7: next quantifier
2: Vo5 T

whereupon the previous quantifier (the one addressing 6) will immediately bypass 6
and directiy address 7 (see the discussion of such pointer-bypassing behavior in the
next chapter).

Note that this can result, when n = 1, in the only remaining quantifier excising itself, that is,
changing itself into a self-referential pointer (the unit prefix shrinks to a null prefix). In this case,

the 3-node will find itself addressing a null prefix and will change its prefix address to null.

Since every occurrence of the variable x, throughout the matrix C directly addresses
node 2, and since node 2 now has T as its target, each such place now indirecty
addresses the expression T instead. The effect is that of a simultaneous substitution in
constant time, regardless of the number of occurrences of the variable.

Thus the J-representation facilitates the 49-contraction enormously. It even permits
simultaneous 49-contractions of the same goal clause with respect to two or more
equations.

In the next chapter we discuss in more detail the contraction behavior of the nodule
processors which comprise the bulk of the SUPER machine. We shall then see how
an equation nodule can be made to "fire" a 49-contraction only when the context is
indeed a 49-redex. In our example, ncde 4 must know that it is in fact one of the
conjuncts Cj. As we shall see in ti.2 rext chapter, it will knows this when, but only
when, it receives an "2(1)" message fron nocde 1 which has propagated to it along the
spine of the conjunction. Intuitively, this message says to the equation that it is a god'
in a gecal clause whose roct is node 1. Since the eqguation can see that its variable
belongs to node 1, the message assures it that any variabies in T which are also in tie
prefix of 1 will not be moved outside their scope by the substitution. This prevents, for
example, the invalid contraction, fired erroneously by the equation x =y with respect to
X:

3x(and (R x) (and dy(and x =y true) true) = (and (Ry) (and 3y(and y =y true) true))
35

"I—l'i"lﬂl"h'i'l‘l'ﬂ"‘l gtk Sk i Baf Sl Joi Su® ot fas Sk a0 SV Sa 070 ol ot s a0 SNECoR oA SRR o4 B ubd 00 oSl SR AR Vi SR8 "V"Y'l".ﬁ'\."."'\"".."‘.""i

- - =

which brings the variable y out of its scope, but allows the correct contraction
Ix(and (R x) (and Jy(and x =y true) true) = 3x(and (R x) (and (and x = x true) true))

to be fired correctly by the same equation with respect to y. The 3-message can reach
the equation from the inner quantitfier but not from the outer one, since only and-nodes
can pass such messages along to their arguments. An and-node is the root of a graph
of the form

Voo = B

a=>A

and

and it will propagate any 3-message it receives both to A and to B. No other kind of
node will propagate an 3-message.

Contraction 48. This is the contraction in which we convert from the some
representation of an existential quantification to the 3-representation. A 48-redex has
the form

3x,...x(and(some n Q) B)

where m>0andn > 1. Thus the expression Q is n-ary. The root of the redex is an
3-node with matrix the and-node whose arguments are (some n Q) and B. In graphical
form the redex is
ad=> a=> B
b: X a= a=eQ
1 J
and oa=n
l

some

where X is the prefix:

36

" gad gca gt >y ol ol olin e as * B O bl ol ot Mhnlt diat ok Auk Sek Aadl B e B Ak Sl Sl Sea Ak A O &8 s b 3 |

.'__.I
‘.:::‘:'
1‘\'
|:"
':j:
1O bin=>x,—a
- L
Pk .
. l
.‘ ‘: I = Xm —a
oy b
Ll
o
J\-.a
!; b
! . : : .
::-.:; The 48-contractum is then obtained in two steps. First, node a executes the allocate
"
o~ instruction
-v‘- c,d = (allocatenae)
[
I which causes the allocation of 3n new nodes, organized into the prefix and
\-‘ « . o v .
e combination described below, and returns their addresses, ¢ and d, respectively.
e . . : . :
far For convenience of the discussiun, we shall suppose that the variables in the newly
:;S allocated prefix are z,...z,.
X%
. . The newly allocated combination is (Q z,...z,), that is, in graphical form:
£
o doa=1z,
o
i
oa4=2Zz
) !
»
s e:Q
3 .".’.
L L
' \.:,': and the newly allocated prefix Z is, in graphical form:
‘. "
[‘J',
."‘ o} lt: z,—a
R3T :‘
¥ "5 4
P
\- '3 1 Zn — a
b 1
1..
4
- C
.-
e that is, its variables all belong to (and therefore address) the calling node at a.
P
Cjﬁ: Next, the old and new prefixes X and Z are welded into a single prefix Y by
3' interchanging the two NEXT addresses in nodes b and ¢, so that Y is the prefix:
e
.ﬁz- 37
R
04
';".;. L 040 W W W Wi Wog Mu K ® g™ FRT R TAY AT A e AT K AT R T AT A" 4" e m A W A - o~ - .-_ v . .
B A b G R X e e s
) AR oA M \-,\,‘-,.\:\:.'-_‘\"-i&p';.f E RS At N TN
"'.. .!"."'.:".2‘0':.!'...0‘1'! :‘\: K . .l'l,o'fn“.h.‘v 'v'.‘l l.l.:' .t'.. .‘ .., > e A - +o “

FTTETT ™ W™ W W WY Wy T W T o ey .-v'a.—~..‘1

ade B

1-‘

W
A
bn=x,—oa
RN
."\.: n=2,—a
- N J
A% n= Zn — a
o
N T=2z,—a
s
Faacy T=X,—>a
) 1 2
.:'?. .
e ’
0y 3
W, n=X,—a
oty J
. b
“‘.r:
k ﬁ: and the new redex is formed:
-
I
'® aad= a= B
5, 1l
.::?;- b:Y o= d
o) i
and
- a
LA "
{
\:;\ The net effect is to achieve the inference step
'lf'\
.__:; 3x,..xy(@and 3z,...2, (Qz,...2) B) = 3x;..x.z;...2.(and (Qz,...z,) B)
AN
l_ (

when the underlined part of the premise is actually represented as (some n Q). Recall
that this inference is valid if and only if the variables z,...z, do not occur free in B.

ol
.:? \'.\."':’

s Since they are in fact newly created by the allocation invoked in going from the some
s to the 3 representation, this condition is automatically satisfied.
D
R~ . . .
»_q;. Note that the redex pattern calls for the some expression to be the leftmost conjunct in
! : the matrix of an existential quantification. We thought about relaxing this condition and
v allowing it to be an arbitrary conjunct (the inference being still valid), but we were
s unable to deal satisfactorily with the nondeterminism introduced: a goal clause could
:% then be a 48-redex in more than one way if its matrix contained more than one some
N expression.

o
po

0. . iy
e The normal form of the expression (Q z,...z,) will in general have many occurrences of
o 38
.r_‘«‘

-v":,:

{e”

N - - i’ - CAIPRACE ENA AR ahe aid
N3 h
B

s

j::j each of the variables z,...z,. By our construction, these will all be direct references to
- the bound variable nodes, as is required by the representation.

o

TN

) Contraction 45. The purpose of this contraction is to move some expressions to the left
:-f.‘j within conjunctions, so as eventually to form 48-redexes. The 45-redex pattern in
:;::; graph form is

Vo ==—===u0=8B

D v

e iLﬁA a=a=Q

and and (f =n

" some

-

w .

t and the 45-contractum is

F -

3

' V (iz ==q =B

-c:_: o =—==0=0Q o=A

P L

b and a=n and

some
* with the condition that A be an atomic sentence (which prevents the loop which would
o be possible if A were itself a some expression).

A~

_ Contraction 46. This requires hardly any discussion. An existential quantification
‘:Z:-:: whose matrix is a truth value is equivalent to that truth value. In the graph
?}_’. representation, therefore, all that is required is for the root of the redex to change its
Vi)

‘¢ label from 3 to V and to redesignate its matrix address as that of its target.

7

N Contraction 47. This contraction embodies the simple basic inference in which an
';EI: existential quantifier prefix may be validly distributed through a disjunction:

) "i

®.

i 3xy..Xn(0r AB) = (or Ix;..x,A 3x,...x,B).

L) J‘\
o However, in SUPER we must implement this inference in such a way as to maintain
' the properties of the 3 representation of existential quantifications. Recall that in the
wy

o

::’.V.. 39

o

i~

.u

‘ 1 Wy Wy W ay W vr.' V.rn ,\v~~v . L T v—,n.w,‘ -« EN Y
"‘.:.‘.‘ " N "'?‘\r *‘f"r:r'.t_ _r'.:v-.: :{\ h:]'_*._ R _z.f%:m o -'.:: o '.-'~‘.-'.:“_ :.r" ",P o N “ .}: A

o gy <\ <u? f‘ I,,

M Zad Al A dae Ao b o dbd ie Skt Bhi A 00 20t Jnd el Nas ak sed auk o |

redex each occurrence of a variable x,in A or in B is simply the address of the
corresponding variable node in the prefix. The 47-redex takes the graphical form

qgi=2>a=b:B
AN
p:P a=aA
l
or

and the corresponding 47-contractum is

a:>s:f!L:>d:A' e:l;'
or f P"

where r and s are the addresses of two nodes allocated by the new command, and the
addresses ¢, d, e and f are those returned by the copy commands:

r's = new, new
c,e = (copypqrb)
d,f = (copypqgsa).

The command (copy p q r b) creates (1) a fresh copy, P', rooted at node ¢, of the
prefix P rooted at node p and (2) a fresh copy, B', rooted at node e, of the expression B
which is rooted at node b. However, wherever B refers to a variable x in the prefix P,
B' refers instead to the corresponding variable in the new prefix P'. The variables in P’
belong to the address r. The command (copy p g s a) creates P" and A’ similarly, with
addresses d and f.

This is where, in SUPER, the basic phenomenon of OR-parallelism arises: a variable
may be bound in more than one way because there is more than one solution. In
PROLOG the different values are encountered only sequentially, and therefore the
same cell can be used for the variable, earlier values being overwritten by later ones.
In LOGLISP the different values are enccuntered in quasi-parallel, and so there too the
need arises for a different cell for each value (or what is the same, a different cell for
each independent "copy" of the variable).

40

- W, W
Aehaaiy
A n":c\-" W
L
\d

M

3 ? ~Sall Dl v T L T TUTR ¥ Al S id Sl Sl SO A AL A Y Al Sl Sl Bl Nl St

y
>
\4‘
“~
L~
"u:
. Global effect of combined local transformations. The plan behind these contractions is
()"
) that it each nodule processor playing the part of a node in the graph representation cf
L . nee " . . .
- an expression repeatedly "fires when ready" according to its cwn perception of local
0
R~ information available to it, the combined global effect will be to reduce the whole
R
oy expression, eventually, to normal form. If a nodule detects that the expressicn of which
:. it is the root is the redex of some contracticn, it will forthwith carry out the changes
N
! reguircd 1o transform itself into the rcot of the ccorresponding contractum (insumirg
3 ava.labiity of the new noduie processors which it may have to aliocate; cge the
N
5. ie
(- discuscon of garbage solaction in the next chaptar)
. CL T TR ST CUDSHOOT (0 s DU, U e an]
< L
‘_\'J 4
. Wiltho contracticos interfojo vaith oo snnther o bon pertarred concune g2 TN j
G R S S S T I S Crooar e Cnr ot see o A
o~ . T Ee - . i . - - - LR . PN - !
9 S B SN T 30 sursuae, 4
<
L
4
Qetore 10’ asaparency The 2ot e o Ao 07 oneh cooacton o ‘
CLtetho come ob el mnes Tt Qv see e Bt e node wnich)
St Ot antraotam g e game s ge was o rot Sithe red o ws snall not
:f'j Attt ot corrantness of any referance to thyt e from aryaniere Sino o the h
~3;I S acdresens of the node wi sl soto say, b ceforrir o th e sime semantc
N ~nert T s whatis meant by "refereniial transparency” Thoas o whlie a contactum
S3ound isuction at nede §inveivieg the addrasses ¢f o or more oiher nods {
2 L
o8 ess othor andes are themselves undergeird contract e, thalr addresses wil .
< T SJooantizady vahd througheoudt the oo svgoticr at -2 fe t0 This relatansap s -‘
" cyeriiriooany otrer nedes addres vy rode Dwell D s oo Lo semanteally Lrnfensted

Za@
.
~
)
..‘)
e}
O
wn
s}
X
2
[(®]
o
W]
O
[¢9]
As]

L3

N
' It scems “herefore, that provided «ach contracticn 15 carried cdt correctly in i's own

': terms. the charges involved will indecd be referential’y trarsparent | that 15, invisibio

) 10 ah cther contractions. Existing structure dees not disappear when contractions take :
.~ place: it remains behind to be seen by other nodes who may stll be sharing it. Nodes i
i - disappear only if, and when, they become in..ccessible from the rocot ncde of the entire

f E expression. Until it disappears, a node retains its semantically invariant significance.

j In the next chapter we consider in more detail the reclamation of inaccessible nodes. ‘

H

41

‘..". c et
._‘."\._\._ Ty A
P U 1 W U

efafa 00
e 4
.l.‘l ‘_l "l L)

-
R

XA s @

s

PAIOER

e 8 27 a" s

2
o

‘P‘l'l‘l‘l'
ML NS

N

RRORAT

A p :
e @Y

@ L
Attt

k>

Tk 2k N

FA M S

Are the contractions locally deterministic? No expression can be a redex in more than
one way. An apparent exception to this is tho case of redexes of type 49. A 49-redex
can be one with respect to two different equations, or indeed with respect to a sing'e
equation both of whose terms are vanabies in the prefi.. The second case caa o 1
trivially resolved by taking one of the two varabies (say, the left hand side ¢f the

equation) arbetrarny as the varabie of o anhoy The fretcage is more suct 0

! - -~ - e - - . N . ~ N o R I .y
tasthe root o I 0t eguaton ot s o e of the e nox tant wnues
\‘.fJ_Ci\ﬁ“va'*" s S res e " oo e P R SRR et ety - !."v; e (.,’,: N coo.

arry ey vy T N e e ~ . R . e o, Ay e

LR SN 193 i B . ' . v .
OIS NS

a ~ilate (& ol o [
AND-paraiielism o SUFC T :
P e e } CUTN T . . ~ R . ‘ oo . B
37 565 e R R - e SR ‘ ‘ '

—~ ps . -~ ¢ - . . '

Lncaien o oot s oo ' N -

P , X [L S SR M e ed - : e e
sama varabi, 1hare may very wel be a0 MO S nan s I 0

the address in tie correspondang vanabe rods 19 (i conera’y G feraat targots

two or more ciiferent "bindings” for the sama varaoie will be attemptec). Only one Uf
these, of course, can be allowed to succeed, and fortunately the logic of the
transformaticon is indifferent to which of them it is. As we sha!l see in the next chapter,
the reconciliation of conflicting messages is vi.ry easy to dea!l with in the Connection
Machine on which we first intend to implement SUPER, and so in practice one of the
"bindings" will be accepted and the others rejected without any further complications.

It is intrinsic to the full-contraction SUPER scheme that the relaticn symbocis in all "Horn
goals" in a goal clause get simultaneously replaced by the corresponding Horn
predicate expressions, giving rise tc AND-parallelism at the higher level of goal
elimination.

42

. BV
[RPRERE ST VY

[SENL N

v
48

33;;_: J:_l;_l:‘l -

e

-'v'n\"n'.\

A
I3

CHAPTER 3. THE SUPER MACHINE

3 -~ i . e ~ - ot -
Ve a4 ron e Jodon o hnoearn o paratte! aootoan P
QTSR INER T ; oot D T A T -
: - - - J
- oy ~ -1 r L. v ~ -
:
.
.
.
‘ S 2R TN PR R ST C
S (B Y.) AN - r
) . RN B T WP B ‘ . R e ¢ -
T ‘_'__," ' AL ! - ’ Lot 1

and ey cohive cpdylar mengry in wioot o con dore a gray b expranson oo
reducton procesaing. The noduiar memory consists of a large number of sanad o o

memorieg, each cne belonging to a small processor called a podule As fur as the

43

A AR a'A B A S o s s Sk Gat Baa o) Ty

"T'\'v

A ’
Y Y VI

ca e X

v e s

:

"IN

LR Sl (s 2ldil

e

; :; front end machine is concerned the nodular memory is just a region of its total memory,
EZ which can be written to and read from, both in the usual one-word-at-a-time manner

: : and also in a parallel, all-words-at-once manner. Finally, it has a Postal System,

4 which is a high speed, high bandwidth communication network modelled on that of the

\E Cecnnection Machine, over which the nodules can send and receive messages to each

Eﬁ other.

\

A SUPER user wilinteract directiy only with the frort-end machine, which will accept

as input a (posably sugarad) SUPER exprezscn D far reduction *o normal form The

frent-end machine transtate s © o the corren;, g raw SUPER graph erpress 3

\.: andnstalls E in the nodular memory, wher2 it is then reduced to rarmal fore Lo

j ccmpietion of the reduction process the resuil g graph is o0 recaverad Lo 10

E :12 nodular memory by tne front-end machine and tran<!ated back to the sugared ratn o
._ for output to the user. The translaticn by the front-end machine eliminaies &

abstractions by appealing to contractions 1 through 20. Thus the graph represertatcr

g scheme which follows does not need to represent abstractions as such. However, @5
oo we shall soon see, the graph representation of quantifications indirectly, but in a highiy
::3:- controlled way, permits the graphical representation of the abstractions which occur as
o arguments to the some functor.

L

‘ The whole transaction, from the user's viewpoint, feels just like a transaction with the

f single-processor LNF-Plus system. The work done is abstractly the same, and differs

’ only in being done by steps of multiple redex contraction (indeed, ideally, full

. contraction) rather than single redex contraction.

s

b

ﬂ'_ The nodular memory: 2" nodules linked by the SUPER Postal System. The main

‘,7 feature of the SUPER machine is its nodular memory, which instead of being a

_.;' collection of passive storage cells each having no capability other than to hold a unit

," of information for later retrieval, consists of a large number of active elements, called

s nodules. Each nodule is a small special-purpose computer which can read from and

;f write into its own |ocal memory and can also do simple computations. The SUPER

?- 4

. W

°

.r'\'-" "':;,"’,-‘::': , , J '/: .r:.r'.:- ::::'_::»'-}‘-:ﬁ’_\""."-.."\' x:\f\:f : "I ‘;_\ -.' \: : _\'-}}_-::::::'_:.’f_:i:’g \:\:'\1*\‘-‘\::}_ e

‘ f]‘l/
N
A‘Qnﬁg‘:ﬁ

R AR

.f.'/
A‘m

muu&u \ 3

F
3
]
3
o
b
!
y
f b -
y : -
8 z
£ : .
. - R
< ' .- .y
; " ‘, ~
2 N ’ Z
p N R
p o o
< oo
b K
3 . .
. : ot %9}
2 M <
] = !
3 .
y — , -
o) - . ,
1 o ' - =
, a M “,y H N
; W . oe =
3 ‘o “~ —
3
>
[
: - L
o
- <o
. : e,
e O
3] LT
s
3 - O
= I
SRR 3§ ANy WL SRR R A T R A e LTy N YELELAAL . RDSE NN NS, e
OIS 5 A AN oL ~ 4N GhAS S Y PR A AS VT, e SR 3 A
n.. b 8 / \ntw-\-\.l\.-..uv v\!.-n-\... A .-A-\. --I-il\ Pl PP AN N-.s . s ARN-.-- W el u-u 1-. > -\f\.-\ -\n\f- @ W f--- (NS ’%A‘ (S .f X
- -3 » . - 3 = W ~ - - W o g - baiis S

r
+

N

w,

e
A

!

A

"t

B
.7
e
v =

-
s

.

:,'\
-~
<o
Q o

o
,‘1

e
NN

t\ t‘\-

-
iy

.
oGS
- "

oY

A
\‘

49 89,

'?.
S-.r‘

w
e
r

L

)

(X
W

- .‘ ~"‘-
e
o,

4
e
oy

o

R 4 .=

i) oy,
SR @ LN

Mol ol can ‘al ‘Ao "Ane i’ Ak W - - - - Rtk iy

T

¢
A
- .
:I: The 1-bit fields in the first group of six are known as type fields. Exactly one of the type
A,
; o fields is setto true and the rest to false, in order to show which type of node the nodule
2 is representing. The remaining five fields are for various housekeeping purposes
j'_?. which will be discussed later. Each nodule's remaining memory depends on the
E: contents of its type fields.
L
o
N A combination noduie (one whose COMBINATION fieid is true) has two n-bit fields,
L
- OPERATOR and OPERAND.
[
'\. A quantification ncdule (one whose QUANTIFICATION field is true) has two n-bit fields,
R MATRIX and PREFIX.
sin
\}N
2. A quantifier nodule (one whose QUANTIFIER field is true) has two n-bit fieids.
o CONTENTS and NEXT.
;:::
A constant nodule (ore whose CONSTANT field is true) has one n-bit field, WHICH.
~" i
|
‘é A pointer nodule (one whose POINTER field is true) has one n-bit field, WHERE. |
I ‘
e |
A variable nodule (one whose VARIABLE field is true) has one n-bit field, WHOSE. 1
::I '
:-_”,
7 Thus we have nodules with two different sizes of memory. The larger memory size is
=4
; that of the combination, quantification, and quantifier nodules, which need two n-b:
fields in addition to their type fields and housekeeping fields. The smaller memory size
_ is that of the pninter, variable and constant nodules, which need only cne n-bit field in
;1;/, addit.on to their type field and housekeeping fields.
e
"'i‘. We refer to the COMBINATION field of the combination nodule whose address is i as
'“-i: COMBINATION]Ji], and similarly for other fields and other addresses.
! L4
)

46

....................... o LN P N
................. hhaA - "IF:."\:;\(\'J-“.-\ (-\‘:- ":':'_- o ':"
PN ST NS A Pl '\ﬂ\ "\1"'1:'-?\ A,
SN ™ TR N A . L P LS T e AT R RS T
N N e e v R O AV A W U N A
ol B A S W A W e Ca K A W S o T a a ¥ ‘a'.n‘&t P AL AT

k
4’:" Y. I —~ - T N [N~y e e Vi . ‘
A r-troa (graph) expression B o oestalied Ly the frost end orachee o s oo
1
A ST 141 EaRa VRN T S SETHR Fo T HTo IO T RES BRCIFCIRNN SESOTRNE s TATOts BNSETRSATS B ¢ SRORAI NNNING SPRTES LACELe NN CUN URN ORI
')n“; - ~ !
o
' AT
Y
%
SO
A
rar v cins rede s thorost ef a comir e, the foic © TRARNATIOH s ot true
o
' cond oait the other type dields are 2o (0 talse The teds OPERATORD an

by CrEHANDD] are then set respecuvely 1o the acdresses ¢f 12 Coeraiar ar o
N .
P operand.
s
[4
A
2y Hihe node s aconstant, the fieid CONSTANT] is set 1o true and the other type
o fields are set to false Tne field WHICH/{!] is set to the bit pattern correspondinig 0
M
" the constant.
N
."'.f
- () ifthe aode s a pointer, the teld POINTER[] is set to true and the other type fields
RO are sel tc false. The fiaid WHERE[] is et to the ad<ress of its target.

S (< ' tne node is o quartitodtion, the foid JUANTIFICATION[] s set to

e

N

I Dt T N TEIN T -
e true ardthe otner type feldo nre aot w3 false. Tne field MATRIX[] s set to the
S

s L . , L L

- crdreas of the matrx o oo oantiic Hothe tound varnhes of the

~ oy o R N T s N e P - - ce P N R - S~ e
D LTV LCh G i ‘ ; , oo [A A N S R T HOW

"
ar
4 rx

'JI"‘I"“’

e PN A, bt)q(\r"\ .- . N Vaip o P, e

RN

@ "
»
-

;’r

N

.‘-J'.

"-{'. : ' [Tl G RN e R . . . - . + ~
.7 . LA fv. l}\") . .
AN

+ gartouor choice amon i, v ey

~ i

L ¥
)

.l
PN R

»e
L
.

Tne REFERENCE-COUNT field of eacih »ode isnitialized 12 tha coriect vaiue by the

»
D)

L WY

front-erd machine when the initial graph is installed in the nodule memory.

V..'.'.;.v
LoaaSsN,

o

47

.l ‘l
SAN

Yy

.
B

R]
-

@
» lan

P

R N N S R T I e o P L L S G R L TR G TG

o F N) Jf'_’ A A e P AN N -7, "~ e DA AN NN ey W

S I L L N N NI N NN e e L e L A e T

LA YR y - MNP RY o MR T AT AT A g e T P P A N

NN A A A T A AR A A NN > NS
T T R A A S A A A 5 Y A A L A Y AR R S, 3 O AL

-

o
l‘ n“ .‘LJL

‘!
'{I‘-K

U 0 ey
Pl s
(e

@l

G
‘. \ '.l(.b.l.

st

v ',l'l.l.
..;.f“."r' P o

¢
a g
PRI}

etels

- e

'
® L

The behavior of a SUPER nodule. When the nodules collectively are set up tc
represent in this way the graph expression E, they can be given their signal to starn

their reduction behavior.

The main mission of the ith nodule is to find out if node i is the root of a redex and. if sc,
to bring about the changes which represent the corresponding contraction. As the
global reduction process continues, each ncde in the graph experiences a success.or
of redex-contractiocn changes, and it is the |50 of the noduie representing that ncce t:

make those changes.

The auxiliary mizsion cf the ith nodule is 1o manage tha propajgation of ¢.tar
infcrmation about is own status with respect to the reducticn process as !t un‘ras
This invoives the continua' monitering of both its cwn gtatis fieids and those 2f -
immediate gescendants, i.e., LNF, ACCESSIBLE, ACTIVE, UNKNCW?!, FREE zar<d
REFERENCE-COUNT, so as to be ready to take the correct action when the
appropriate circumstances arise, as discussed below. This auxiliary behavior is rot

strictly speaking reduction behavior: it is more in the nature of housekeeping behavicr.

The reduction behavior of nodules. It helps the intuition to imagine oneseif cast in the
role of a nodule, and to go through the different possible circumstances which can
arise locally, together with the appropriate actions. To begin with, there are many
circumstances in which dcing nothing is the correct action. For example. it our
REFERENCE-COUNT 1s 0 then we are an inaccessible vertex, and we simpiy wait for
something ta happen (actually, as will be discussed below, since this means that we
are a "free” ncdule, avarab'e to be allocated when some contraction elsewhere in the
graph reguires a rew node, we can in fact do something useful, namely propagate the
news of our inaccessibiity to our immediate descendant(s) by subtracting 1 from (e
reference courts, nullifying our pointers to them, and then setting cur FREE flag o
true). More generally, we do nothing unless we perceive that some action s actuaily
called for. However, our passivity is busy since we must remain watchful, continuously

monitoring the various nformation fields in our "neighborhood". When any of them

48

S i B IO Sl bbb . Ade A - R J

,,,,,

change it may be necessary to spring into action.

The nelghborhood of a nodule. We assume (as is the case imimediately after tha
graph has been set up in the nodular memory by the front-end processor) that the ty;e
fields in each nodule always satisfy the condition that exactly one of them is true ard
the rect false. We shall say that a nodule is a combination, etc., if its COMBINATICN

field is true, etc.

Constants are completely passive. The job of a constant is to stay entirely inactive It is
there to be addressed by others, and that is all it needs to worry about except (see
above) to watch its own reference count in order to be ready to return itself to the pooi

of free nodules when the reference count goes to 0.

Pointers do very little. The job of a pointer at address i is just to point at another node
WHERE]i], its target. This is rather an undemanding role except that its target may
suddenly itself become a pointer, in which case WHERE[i] should be changed to
WHERE[WHERE]Ji]]. The point of this change, no pun intended, is that pointers shouid

always be bypassed whenever possible as ‘part of the ongoing compaction of the
graph. This is all a pointer node i has to worry about. but to do this properly the pointer

i must monitor two fields. First, it must watch the field
POINTER[WHERE]] -

ts target in crder to detect when ¢ ranges to true. This will happen for exampie i
the ncde WHERE([] undergoes an I- ¢r K-recex contraction The mement that noc
WHERE[i) becomes a pointer, its WHERE fieid becomes the address ¢f its target. S0

the second field tnat pointer i must men.tor is the WHERE tield of its target
WHERE[{WHERE[i]]

ready for the moment when the action

49

.I'
“ -_
\ D 4‘
-‘ l‘
LA ‘\ \
AJ(‘-MA, T

N S LR It Tl Il Al B A A A A A R A R afh At ath afh ol oSS abl- oSt clb” gl A" ha = o Rat dhaw feb_Bas Jialflad AT St Sl f A b sas e Bl Bod Bl Ehd iV JLEES |

—
—

) increment REFERENCE-COUNT[WHERE[WHERE[i]]]
(2) decrement REFERENCE-COUNT[WHERE[])

(3) replace WHERE[i]

by WHERE[WHERE]i]]

must be taken. In order to perform this monitoring function correctly, the nodule playing
the nart of pointer i must read from POINTER[WHERE[])] and WHERE[WHERE[:}] once
each message cycle. and execute this action each time that POINTER[WHERE[] is

fiue

Combinations do a lot of work. A ccmbination i has to be ready to spot that it has
suddeniy become a redex and to take the appropriate action. Considoer the possible
"views" which a combination has of its neighborhood. First, no matter what kind of
redex it is, or even whether it is a redex or not, a combination must take special action if

its operator or operand is a pointer, namely, bypass that pointer just as we have
already explained. Thus, if 1 "sees" that

POINTER[OPERATOR]i]]

is true, it knows that the node OPERATORIi] is a pointer and that what it must do is the
action

(1) increment REFERENCE-COUNT[OPERATOR[WHERE[]]]
(2) decrement REFERENCE-COUNT[OPERATORI]]
(3) OPERATOR]i] becomes OPERATOR[WHEREIi]]

which bypasses that pointer. Similarly for its operand. We shall from now deal with

combinations which do not have an operator or an operand which is a pointer.

50

R
) et] Oy 1‘.
. “'o“_; ‘_hl'.~.'..-
VLI
i . - et
B N YA .\‘.\{

Let us discuss a few of the contractions to get the general idea of the contraction

behavior of a nodule. First, we consider contraction 18, which deals with I-redexes.

Contraction of the I-redex. If noduleiis an l-redex what it sees is that

., CONSTANT[OPERATOR]i]] and WHICH[OPERATOR]]] = |

and what it must therefore do is the following

£l (1) decrement REFERENCE-COUNT[OPERATORIi]]

'_ (2) negate COMBINATION[i] and POINTER]i] (turn itself into a pointer)

; (3) set WHERE][i] equal to OPERANDIi] (to its former operand)

~,

g

s If the WHERE field of a pointer nodule is the same physical piece of memory as the

_?. OPERAND field of a combination nodule, then step (3) is automatic.

8l
{

p We next consider contraction 17, which deals with K-redexes.

&

ND
; Contraction of the K-redex. Nodule i detects that it is a K-redex by seeing that the fields

. COMBINATION[OPERATOR]i]] and CONSTANT[OPERATOR[OPERATOR]i]]] are both :
.. 9
. true and that WHICH[OPERATOR|[OPERATOR]i]]] = K. What it must then do is the ;
Py following)
oY 4
Y o
K (1) negate COMBINATION[i] and POINTER]i] (turn itself into a pointer) i
1 L
. (2) set WHERE][i] equal to OPERAND[OPERATOR(i]] (to the operand ot its former]
“" operator)

] (3) decrement REFERENCE-COUNT[OPERATOR]i])
- (4) decrement REFERENCE-COUNT[OPERANDJi]]
‘A
-2 (5) increment REFERENCE-COUNT[OPERAND[OPERATOR]i}]]
" (6) set OPERATOR(i] and OPERANDi] to nuill.
S
e 51
S

2
K,
q
: ~ - - . T Y I I SRRV P P P A -‘,'.'.'..."_(_'.‘ o R '.’.'.'-"" AT - . .: o p
R R "N-"-:’-‘-"f~f-~’.~$:-’:-‘}:~$-$.~_$.~$:$:-’-::'5?.?.:";:'2.:5?3“1.:_:f.;j.'_;:-:v oot --~'«::f-'-‘;:;'-;:;:-:';:1*‘!‘“;:-5:-3;?*
N N N B R A R R A R e

D -':‘

::;j Contraction 14 : the pure S-redex. Nodule i detects that it is a 14-redex by seseing that
e the fields

N COMBINATION[OPERATORYi]]

;’? COMBINATION[OPERATOR[OPERATOR(i]]

.'C: CONSTANT[OPERATOR[OPERATOR[OPERATORIi]]]

" _. are all true, that

_E.': WHICH{OPERATOR[OPERATOR[OPERATORI]]]

':-:: is S, and that if all of

R,

) COMBINATION[OPERAND[CPERATOR[OPERATOR]I]]]

3 COMBINATION][OPERATOR[OPE RAND[OPERATOR[OPERATOR!)]

‘ I CONSTANT[OPERATOR[OPERATORIOPERAND[OPERATOR[OPERATOR]},]]
::f-: are true then

?’ OPERATOR[OPERATOR[OPERAND{OPERATOR[OPERATORII]]]]]

2‘% is not B.

7

{ Let

" f = OPERAND[OPERATOR[OPERATORI]|]

E g = OPERAND[OPERATOR]i]]

' x = OPERANDYi]

N

! What nodule i must do is the following:

N (1) a, b:=new, new

? \: (2) setup aand b to be combinations with reference counts of 1 each and with

e OPERATOR([a] = f and OPERATOR[b] =

: OPERAND[a] = OPERAND[b] = x.

N (3) increment the reference-counts of f, g, and x

B 47: (4) decrement the reference count of OPERATOR]i]

; ; (5) set OPERATOR]Ji] = a and OPERANDI[i] =b

o

: The other contractions in the "combinator" group (8 through 20) are handled in
R 52

: &

'\

| @

;fi’:‘ SR :’;,55 3:;:}:515::3:3;15553::53';&;::'_~j::ﬂé_-;'_»;:iiiﬁiiﬁsizgiggszziﬁii;_?_1;j.}‘:;5{;‘-;:_5;:5::';‘.*.5:’;}::';{::-;‘;:;?;;ji_:;i;'-_i-;;:-;{-‘:;}
W .o " »" * *«,-. - A N A S :

BAalalalaralaSelalals R Rl

P4 -~
DR

“Tw

Y@

o & &

L
LAl

P EITELEES [d
NSO R

2

N al
HANS .

Y T W W W
Pl A
b

ST
{’3! . %
LA

analogous fashion.

Contractions 1 though 7. These contracticns are intended for execution only by the

front-end machina. and raise no problems of principle.

Behavior of quantification nodes. A quantification node whose address is i has the

responsibility to transmit to its matrix, once each message cycle, the message 3(i). This
message will be retransmitted immediately upon receipt by any ncde of the form (but cf

no other form)

/

voo=>B

a=A

and

to the roots of A and B. As was explained in the previous chapter during the discussion

of contraction 49, this 3-message system is part of the engineering of the correct
implementation of that contraction. Any equation (one of whose expressions is a
variable) which receives such a message can immediately know whether to fire by

comparing the address in the message with that of the owner of the variable.

A guantification ncde must also watch the node addressed by its PREFIX field, which
will normally be a quantifier node. If (as we saw can happen) the quantifier node
changes itself into a pointer node, then the guantification node will routinely bypass the
pointer by changing its PREFIX field to address the target of the pointer. However,
because of the ring structure of prefixes, it is possible that the target of the pointer may
be the pointer itself - the null prefix case. In this case the normal bypassing procedure
would merely reproduce the self-reference. Therefore, instead, the quantification noce
will change its PREFIX field to null .

Short average lifetime for nodes in graph reduction. In general one must imagine the

creation of new nodes as going on continuously at the same time as the process by
53

A = Poallatt Eaiat At e i o L B A LA S ACE A A |
PN
e
-‘_‘
4
\-ﬁ;_-_' which nodes become inaccessible and therefore available for reuse. The faster both of
o these birth and death processes go, the shorter the average lifetime of each node. If the
e
! births happen faster than deaths, the finite pool of available nodes will soon become
R empty. There is therefore a premium on the rapid detection of inaccessible nodes:
:I:‘,: ideally they would be reclaimed at the moment they become inaccessible, but of cours«
S9AY
'{-.;: the engineering reality is that this moment may pass unnoticed with the consequenc?
L) that a {(mathematically, cbjectively' dead node may go on living (ana, compouncing the
o
N N . B : . [P &
B problem, coensuming resources) for quite s7ovo time before finally being detectes, koo
W)
o and racycled.
.
14
A
o Hew nodes aliocated at very high “ote bEvnerence with cngle procraser , o
-
w chows that new neaes are indeed credted at a vary high rals Conacequent’s nl.o.
-
«-j,_“.; this is ofiset by an equally high or higher, rate of node recuvery tra computation v’
?:. soon end when the pool of available nodes beccmes empty. This is why w2 altach
j:'.:‘_ great importance in the design of our nodule processor to its role as scavenger.
w7
s
”' 2 A remark concerning nodule recovery. Inthe contraction of a 14-redex at node i the
f-_‘:f: following could be the case (and similar remarks apply to other contractions). Let c, d.
.I‘\.'. .
" and e be the vertices
.r_:.
_ OPERATOR]],
o)
C L) .
h ;,':- OPERATOR[OPERATOR(i]] and f
4':': . !
v OPERATOR[OPERATOR[OPERATOR]]]
A
o
5y Then it is often the case that the reference count of c is 1 - that is, that the gnly vertex
Al - . .
o pointing at cis i. In that case, ¢ can be used as one of the new vertices a, b. Less often,

 y
r

PR}
a
R e

it happens that not only is the reference count of ¢ equal to 1, but also that of d. In this

-

case, d may then be used as the other of a and b. Finally, the reference counts of all

.- :
e three vertices ¢, d and e may be 1. In that happy case, not only do we not need to draw
Z:::'; new vertices from the pool, but we can even contribute one to it! This remark shows
QRN

. that we can often hope to speed things up by avoiding the formality of putting nodules
:'f:j 54
-
o
o
A

b N\

el Sl 4 ham il adonad el Al b A 2 g o AVl & ard ol ali Lta A A" Aa" R i’ AR et Aat - - - L el Bt gt § Ll Al A ‘A SR 2% A% 44 'L"-"\"\"“‘"‘\."\v"‘)‘," m‘

1

N back in the pool only to draw them cut again immediately. A similar remark applies,
N mutatis mutandis, to the contraction of the other types of redex.

Returning oneself to the pool of free nodules. There is a circumstance, already noted

earlier, under which gny node i can take a useful action even though it is not a redex. If

the reference count of i is 0, and itis a constant, then it should do the following

(1) CONSTANT]i] is set to false
(2) FREE[i] is set to true. (proclaim its availability).

On the other hand, if it is a pointer, it should

(1) decrement the reference count of WHERE]i)
(2) set POINTER]i] to false
(3) set FREE]i] to true (proclaim its availability).

If i is a combination, it should

(1) decrement the reference counts of OPERATOR][i] and OPERANDJi]
(2) set COMBINATION]i] to false
(3) set FREE[i] to true (proclaim its availability).

Similarly for other types of node.

»
P

4

% Nodule memory management. The nodule-consuming commands new, allocate and
4_ copy are executed by the nodules in SIMD fashion under the supervision of the
fé front-end machine. We at present believe that the technique needed for their
‘!1. implementation is a straightforward generalization of that used in the Connection
EZ',E Machine operating system for the implementation of the command new alone. Namely,
It’ the front-end machine coordinates all simultaneous requests for free nodules,
s computes the responses and transmits them to the requesting nodules. Under the
G

55

bt

P

7@

A
G
% O

-
v
.,

-:-; assumption that the pool of free nodules is large enough to satisfy all requests, the extra
: complexity in the SUPER machine caused by the allocate and copy commands does
' not raise any new basic issue. It is simply that in the SUPER machine the new nodules .

wiil in general have to be organized into multi-nodule structures (as explained in the

b . previous chapter) rather than supplied one at a time (as is all that new requires). The
™ copy ccmmand is almost entirely analogous to the classic LISP command of the sz -
. name, but with nodule processors taking the par of cons-celis :
- 2
2’

This is a correct realization of full reduction Taot *he above no o b

‘ correct realization ot the ahatrantprocerss ot “LL Co o M T Db e

.

: The manissue s the ccordination of & < aoton” of o nod ne s w

\ a nodule 1 changaes its dcat mzmory to rmflot g rede oo o 0l

the neighborhood of i, some of which ¢f cource w e v od i the cor

_! are themselves (perhaps) algp cha: g their own focat nicrmaton, Wnat woe mooo
- show is that the correctness of the changes made by the nodule 1 is rot vitiated oy *
- changes made by those in the neighbcrhood of i.

s
{

If a nodule is a redex, then its spinal neighbors are not. The spinal neighbor of an B

.:j I-redex is the constant I. The spinal neighbors of the K-redex are the combinaticn Kx
-;‘: and the constant K. The spinal neighbors of the redex Sfgx are the combinatiors S
" and Sf and the constant S. None of these is a redex, and moreover none w.ll ever
; become a redex as long as its FREE field remains false. (Of course, after reciamaticr

into the pool of available nodules, the next incarnation of the nodule may weil be as a

‘ recex, but this is irrelevant). It follows, therefore, that a nodule which needs to read from
" the fields of its spinal neighbors in order to reset its own fields to represent the result of
a contraction can rely on those fields to remain unchanged.

b
. The condensation of increment and decrement messages. In order to continue the

correctness argument, we need to know about one of the global capabilities of the

-

SUPER machine. In particular, the SUPER Postal System (after the fashion of the
(Connection Machine's Communication Network) provides a ¢ondensation service for

\ 56

‘4
o]
q
A s . e .- . .
HORCR CACRA TR SRS ARCNS (*\ '\‘\fﬂ."\’-‘ HERCR RS SR AR S ST SR RS
*.f-_t.--ff-f-l‘-\ ." Eo T e A T R PR N TR AP -~
A e f HE R T e Y AR
AR o s e 7 ..J,x*. ~\'\'\<.'\'.'-.'x'~.\\'.‘~.‘~.-'_x‘ VRN -“-\- . -
. A% A -,’\f\{.,f._’ \J\J\,"\’*\. 't, \. L ORA SN "\'-\”-\"*'\.'\"'.)\" ' J .' \' e .J\ - 3 2
L Y O < (g X N NaXaKus Ah o W o e e o ™ {A_{L.w LL_{L‘A—M‘_“MA“MA.-

il A A il A i A S B ek e Ba i Bl A A S a0l B A 4G A'S e b A d 2tk BUl AvE 0k o/l Gl At 20 ARE 21g snd atd sid ath atd s oW o v Wy

“incrament” and "decrement” inter-nodule messages. This works as follows: during any
one delivery cycle, a nodule 1 will be, in general, the addressee of many such
messages, say, m increments and n decrements. They will have been sent to i by all the
other nodules which want to increment or decrement the reference count of i. Instead of
delivering to i such a (possibly) huge bundle of messages the Postal System delivers

one message: add the integer (m - n) to your reference count.

Nodules are small, simple machines allowing large scale replication. A local nodule
memory needs only a small number of bits (80 bits is more than enough, assuming
32-bit addresses) to accommodate its various type, housekeeping and address fields. A
nodule's state is essentially, then, just a single 80-bit word. However, in order to
accomplish its various contraction tasks a nodule must take into account features not
only of its own state but also of those of its neighbors. This information will be acquired
via incoming messages and will need to be stored locally. So we must postulate a
further, working region of a nodule memory big enough to accomodate the largest
amount of such neighborhood information which might be required. This case arises
with the 12-node neighborhood which is involved in the pattern of redex 45. If we set up
enough space to store the state words of 12 other nodes we would need a total nodule
memory of 13 x 80 = 1040 bits. This should be compared with the Connection
Machine's 4096 bits per processor.

The nodule’s processing logic is simple. It has to perform a 42-case analysis to detect
which, if any, of the redex patterns it represents, and then must be ready to execute the
appropriate contraction once a redex pattern is detected. (As we noted earlier, the first
7 of the 49 redexes will not arise in the graph representation). In addition to this cycle of
redex-contraction patrolling, a nodule must test to see whether it needs to carry out the

various propagation chores we have discussed, bypass any pointers it can see, and so

on. The entire code for all of this amounts to no more than a quite short straightline

-

- SRS RAENS Y,

program.

’ r’.r’ ‘l‘

Thus the nodule is suitable for large scale replication, in the manner of the Connection

@'

RS

57

LA

P
Lo

.
2 e
P

(

3

»
S

s .
SUlileh

D
N 4
’

N/

I‘ -
a i
.-.n -

-.i,_&sA_“n

A
SANS

®¢

4
P AT A N N

.
A M

P L P P
,‘5..\’ Y

NN R ADY,
SR RN RN
AR

o TR ASTARTTR T R T N Y TN Y YW R U W T W T W T T W T A W TR TR T . TR T TR T e T .

Machine's memory processors.

The allocation of new nodules from the pool. The pool of free nodules at any time is
just the set of nodules whose FREE field is true. Also, in any one machine cycle, there
will be a set of requests for new nodules, arising from various contractions which are

taking place at that cycle and the consequent various new, allocate and copy requests.

Tne SUPER front-end processor, via the Postal System, coordinates all such requests

and fprevided that the total number of new nodules reaquired does not excead he
~.roar of available nodules) sat'sfies 22ch new raquest by sending a ninigue iree
roil o address te the requaesting nocula, and 1 ot es each allocate and copy oo
aporopriately to the parameters of the reqonst These facilitios generai-o hee

processor-cons feature of the Cennection Machine, as described by Rillis and Slee'

ra o

In the event that there are more nodules needed to satisfy all requests than there arc
free nodules, some requests must perforce be delayed according to some fair discipline
whose details will be related to the general scheme for controlling the firing of

contractions.

Global accessibility analysis. The front-end processor must periodically, in any case,
initiate a global _accessibility analysis in order to detect nodules which, although
poss2ssing a nonzero reference count, are inaccessible from the root nodule arc
hence ready to be rewurned to the pool This process is essentially the same as the
marking process in classical LLISP-like garbage col'ection. It involves interrupting the
activities of the nodules, telling them to freeze the addressing topology existing at that
moment. First, the ACCESSIBLE and ACTIVE fields of every nodule are simultaneously
set to false, except for that of the root nodule, in which the fields are set to true. Then
the nodules are restarted in a special state in which each nodule i monitors its
ACCESSIBLE field, watching for it to become true.

The moment this occurs, the following action is taken:

.-'_:.r_'.,-:.-:',-"z:‘. A
A ACACRE R
T A RPN
RN R T S R Tt e N
PSR AP AP PN A RPN SN
o WA Wi W WS e WA VAR PSS Ve NS0 . 1 Ve S 0%

b%%h S
4

a 'l'

'l
(3]

(1)the ACCESSIBLE and ACTIVE fields are set to true of the immediate
descendants (if any) of whose ACCESSIBLE fields are false
(2) the field ACTIVE[i] is reset to false

*
|

v
A

2

f: (3) stop

=",

: Y
‘. The front-end processor will detect the termination of this accessibility analysis by the
fact that all nodules have a false ACTIVE field. The above program, running on every

:: nodule, guarantees that there is always at least one ACTIVE field true until the analysis

1- is completed. At its completion every nodule has a false ACCESSIBLE field if, and only

3 . if, it is inaccessible from the root: at which time all such nodules set their FREE fields to

i ¢ true.

;

.9 The SUPER front-end machine. The role of the front-end machine is to be the interface
E‘ between the user and the "invisible" nodules and postal system. The user submits one
.'f or more definitions D and an expression E to the front-end machine. D and E are

-t formulated in a sugared version of the language (whose details we do not concern
i) ourselves with here), just as in the single-reduction system LNF-Plus. The construction
-E‘ of the graph representation G of E and of the graph representations of the definientia of

: D are carried out by the front-end machine, again just as in LNF-Pius. Each occurrence
; of the definiendum of a definition is translated to a reference to the root of the graph of

, -_: the corresponding definiens.The processing of (the graph G of) E takes place entirely

.' within the nodules and is the reduction of G to normal form that we have been

.‘* discussing. Once the graph is in normal form, its translation back into string notation is

2 carried out by the front-end machine. There is much freedom in this part of the system
"E for friendly sugaring of expressions to su:.i the user's tastes, and none of the problems

: we have discussed are affected by how this (relatively) superficial part of the system is
2 handled.

\ The whole transaction appears to the user simply as the evaluation of "E where D" and
: the paralle! nature of the reduction is invisible.

7 59

o

Y
e
S ke o

S A A A O

......

Sl nalh, aad Gl A S e A . S O S e e P A R e e e e T T e S e T i e e A

The management of scarce resources. The front-end machine plays a crucial role in the
allocation of new nodules to service the various new, allocate and copy requests issued
as a result of non-conservative contraction processes. (Contractions 17 - 19, 25 - 34, 37,

and 38 are conservative, in that they require no new node. to be allocated). In

coordinating such requests it must inevitably encounter the problem of an excess of
demand over supply, and the consequent need to delay the servicing of some requests
at the expense of others. This probiem is just another version of the proticm of
controlling the ctherwise uninhidited "explczian” ¢f sorczurrent contractions sho. .G
every node fire as soon 75 it detects that it .o v redex, or should it wait untl i@ ~ac
permission to fire? Who decides, and what s the basis of the decis.on? Tre decison
would appear to be a giobal matter. not a leccal one. No nodule can knoew ercusi 12

rake the decision responsibly. It is, therefcre, the front-end machine, with @z ¢ -1 &

view of the whole graph at once, which must administer whatever policy of scarce

resource allocation we can devise. But what shouid the policy be?

This is in fact a very hard and widely studied problem, and we do not pretend that we
have discovered a solution to it. The whole point of parallel computation is that some

subtasks should be started even though we are not sure at the time that they will

L ml‘;"‘l 0

actually be needed for the eventual output. For example, the classical conditional
expression (if A then B else C) normally is evaluated by first evaluating A, in order to
decide which of B and C to evaluate and thus complete the process. This means that
the time needed for the whole task is at least: time(A) + min(time(B), time(C)). All
opportunities to process the B or C parts of the task in parallel are foregone, on the
grounds that some (but we do not know which part) of the work will have been wasted.
Obviously, in order to gain time through concurrency, we have to give up the policy of
avoic.ng useless work. In fact, if we gain speed by evaluating beth B and C at the same
time as A, how can we so easily say that the unused B (or C, as the case may be)

represents yseless work? After all, it gains us the speed.

So it is with the general problem of deciding which contractions to perform. The easy

o W T, T T, > - el o W e T . T LI LR I T L S
AN S W A S AT AV AT AN TR A S e R .
‘{..’-.':;.':-.‘/\I,'.J,'-"_‘\:’ D _,,"-j{l:- o N Y A A R A At S X EREAATL
e Y e A W B e

1Y a"e ¥ L] Pt A" E) s PN Colad, e DA e
3SRV IT R NN JJ&;MM.(M&Q{{‘. T o A e A A A AT A R

~
~
\I

]

ll
[A S

L

I.l_l"/_

s d

[y

SRARES N

2@
[T T PR Ul W W W

o
o,
NS
"y

'.%
.

policy of "tire when ready” assumes, in effect, inf.nitely many nodules. We do in fac!
have a lot of them, and in many smaller problems we can perhaps actually operat>

this mode. (Some LISP computations reGuire no garbage celiection:

Generalized breadth-first control. Probably what has to be done is to cperate acccrc 7
to some generalized a priori notion of "fairness” so designed as to prevent ary c~¢
node from falling too far behind in the development. For example, a simple scher =
would be for each new nodule to be given a time-stamp recording the time at which it .5
allocated, and for nonconservative redexes to be contracted (if demand exceecs
supply) according to an oldest-first priority discipline. We shall be able to experiment
with various schemes of this sort when the Connection Machine becomes availacie
later in 1987.

SIMD architectures. Computer architects distinguish two kinds of parallel architecture:
« Single Instruction-stream, Multiple Data-stream (SIMD)
« Multiple Instruction-stream, Multiple Data-stream (MIMD).

In SIMD machines a sequence of intructions comprising a single program P is
broadcast by a "master” processor simultaneously to many "slave" processors, each of
which executes these instructions in lockstep with the cther slaves. However, each
individual slave acts upon its own data set, so that in general different computations
take place in each slave: the same program running on different data. The outputs of
each slave can be communicated not only to the master but also to its neighbcrs,
according to whatever is the connection topology of the whole machine - say, the
2-dimensional grid topology in which each slave has four neighbors: North, South, East
and West.

Such a grid organization is a natural one for solving many types of computation arising

from the partial differential equations of physics and engineering. For example, in

61

P A S b St

»

L Il Tl " R B]

-

solving the equation for the equilibrium distribution of heat over a region of a plane
surface one reprasents the region as a grid of cells, each (except for those on the
boundary of the region) with four neighbors. Each cell, represented by its own slave

processor, repeatedly computes, as its own value, the number which is the average ¢!

P,
the values of its neighbors. Given fixed values in the boundary celis, and soma int.o ?
values in the interior cells, this computation can preceed through as many iteratons a- 1
are needed to arrive at the eguilibrium. H‘:F

]
The Connection Machine is SIMD. The Coooccton Machine has a S o ' ;
Dutowan e ntarestog diferonce that Soannection Cimay _J‘
~rnnerhsods of the s'nvn oranes s s aet ke coce for ol by Ve wd D

.
swored tegeinery ot s vantl e, under pregiaT contnt st *;
sohware connectons rather thon hardware connect ong _;

Connection Machine's general purpose communication network. Of course ' ¢l

processors in the Ccnnection Machine are physicaly wired together in a fixeu patiem

7

fas the vertices of an n-dimensional hypercube), but this "hardware-level topoicgy” s

sy}

not the topology with which the program is directly concerned. Rather, there is
"higher-level topology" which, in effect, is simy'ated by the connection hardware. This s
based on the idea that the hypercube connections can be made to suppen -

mecsage-passing system in which, in cne "delivery cycle”, every slave processcr ¢in

send a message (of fixed iength, say. 32 bits) to, and receive a similar messag2 fron,

every cther slave precessor. This capability is that of a postal system - one cord:
~essages to a giver address and receives messages sent to cne's owr addrecs. T

"soft” topologies which can be set up via such a pestal system can be vaned, unc
program control, and made to be whatever 1s appropr.ate for the problem ot noar
desgite the fact that ti.e "hard” topology on which it is running remains fixea by o

pattern of the actual physical wiring interconnecting the slaves.

The topology can vary even during the computation. Not only can one set up the

Connection Machine at the start of a problem to have, say, a grid topology, or a butterfiy

SRy e R TETETRTETE TG TG TR T TR AT TR TS TOW TR W W W

N Y W W Y W W v IV T I U ey == r=

topology, or whatever - in imitation of any one of the fixed-connection parallel machines
- but by suitable programming one can even get the effect of being able to rewire t"o
connections during the computation, changing the connection patterns to suit the

developing demands of the problem as imposed by the data.

Data parallelism vs. control parallelism. This is paricularly necessary in pretiam

93]

whose inherent parallelism resides in the data rather than the algorithm. in many

problems the data objects consist of very large numbers of elements connected
-rI:E together in meaningful ways which are part of the data structure (as, e.g., in the
expression graphs of our earlier discussion) and the paralielism in the computaticn
consists of the cencurrent transformations which take place at the ditferent elements ¢f
the overall data structure. These typically (as in the expression graph case) result in
.changes in the data structure, old elements disappearing and new ones being created,
and old connections being severed and new connections being introduced. The
changes are brought about by the presence of the same "algorithmic force" being

continuously felt throughout the data, as it were, just like one of the natural fieids

described by the physicists. One has, so to speak, to give the "equations of the force

field” in the form of an aigorithm which must be executed cver and over again at each

:
o
s '

. l'l-}‘lr

"point” in the "data space”. This kind of computation exhibits what Hillis and Steele ca!l

data parallelism.

W
o

>
[

This is in contrast with control paralielism, which appears in ccmputations where there

Pl
« 1

are many different algorithms running "processes" which exchange data and

“cocperate” with each other in order to accomplish scme gichal objective. This is the

most intricate sort of MIMD parallelism, the kind of parallelism which most people think

4 ,-'

S

:z:: of when parallel computation is mentioned - many different machines working at the
EE,’:' same time, each doing its own thing but interacting suitably with the other machines
o from time to time. Control parallelisin is very difficult to program, since the interactions
e

:j: between processes can be extremely complex. One has to program each machine
wl . H

‘.;f. separately, but with one eye on the programs for all the other machines, so that each
LY

‘;' machine deals properly with the interactions in which it may take part. In a sense one
A2

ot 63

f::.

A

N

”~

o

%

i

-

PP AP,

must be "conscious” of the entire system at all times.

S

Data parallelism on the other hand is far easier to manage. We write only one (often
quite simple) program which runs a precess which is "cloned" into a horde of identical
processes at work all over the data space. The interactions between these processec
are typically far less complex than those which arise in control parallelism, and cne can.
J so to speak, relegate them to the "unconscious" since they do not require conscious,
i explicit supervision. The interactions are automatic side effects of the "force field" which

Is imposed by the common algorithm at work throughout the data.

L X
a4 s

The Connection Machine can simulate the SUPER machine. Our design for the

SUPER machine is a mixed SIMD-MIMD architecture. Our nodule processors have a

s s E & B

certain amount of local autonomy and carry on with their own computaticrs
independently cf the front-end machine. However, the front-end machine can, where
necessary, interrupt the nodule computations with a freeze command and then assume

control. In effect it can switch the system tc SIMD mode from MIMD mode and then

AP R

broadcast instructions to all the nodules simultaneously. This, it will be recalled, is how

- we do the "setup" phase of the accessibility analysis. As soon as the nodules are
readied to propagate their accessibility, the front-end frees them to return to MIMDC

mode.

Hillis' and Steele’'s example. In their paper Data Parallel Algorithms Hillis and Steele

-r use the process of parallel combinator reduction as one of several examples illustrating
> the way one can program the Connection Machine to take advantage of the natural da‘a
" parallelism in a problem. We have edited their pseudo-ALGOL code somewhai to maxe
' it mere intelligible, correct one or two minor errors, and render it mcre compatible voth
our own notations, but otherwise we have maintained the spirit of their illustration. The
idea of the program should be quite clear in the context of our previous discussicn. Th:
function new returns the address of a new processor, in analogy with LISP's cons.
Indeed Hillis and Steele call it processor-cons, rather than new.

It is not our purpose to criticise their reduction algorithm, but only to show how the
SIMD style can be adapted readily to the simulation of a mixed SIMD-MIMD architecture

64
]
¢
s . [- ~ - . . AT R T AT A" e T AT TR AT A A - .o - Yy T At st
B e e)
e o N L A A G e RN

N such as that of the SUPER machine. However, we would like to point out that their
I~ program does gloss over a number of issues which we have discussed in detail,
especially as far as the reclamation of dead nodules is concerned. It is not necessary to

»e a' s

interrupt the reduction processing to do garbage collection except when the

—

x reference-count based continuous reclamation falls behind the demand for new nodes
-

~ Nor is it a trivial matter to determine efficiently whether the graph is in normal form. As
2 our discussion of the matter immediately below suggests, we consider that the
[}

N cemputational issue is to be able to turn the normal form property into a local preperty of
N the root of the graph rather than to let it remain (as it naturally is) a global propenty of the
X-. whoie graph.

1%

4

.- Finally, we of course would argue that it is necessary to introduce pointer, constant and
, quantification nodes as well as combination nodes, in order to have an efficient
= representation of the graph.

' Their algorithm is then the following:
{
X
<

‘4

<

.

L]
2

¢
i«

{

4
o 65
[
‘¢
48

q
\~ -'Jw J",I::-‘,\' A 'ﬂ." 'y -f

R A
A -,~m’5’x$~¢ci “'“:’c:
vl'! H." '

N1V SRES

S whlle [graph not yet in normal form] do
! | for each combination node n In parallel do
P | | optt:= OPERATOR[n]
, | | if COMBINATION [opt1] then
K | | | opdl := OPERAND [n]
; | | | # COMBINATION(opd1) and OPERATOR [opdi]=1 then
_} | | | | OPERAND [n]:= OPERAND[opd1]
o IR
- | | | opt2:= CPERATOR[opt1]
' | | | H opt2=K then OPERATOR [n]:=1, OPERAND[n] := OPERANDopt1] fi
,' | | | # opt2=1 then OPERATOR [r]:= OPERAND [opt1] i
b | | | ¥ COMBINATION (opt2) and OPERATOR[opt2]=S then
f | | | | a:=new;b:= new
; | | | | OPERATORI[a] := OPERAND [opt2]; OPERAND [a] := opd1;
- [| | | OPERATOR [b] .= OPERAND [opt1]; OPERANDGj := opd1 ;
| | | | OPERATOR|[n]:= a; OPERANDI[n]:= b
L)
'] fi
> | rof
; v | [perform garbage collection if necessary]
:E elihw
- 4
and we believe that its concision and clarity are exemplary. ;
~ |
SUPER front-end monitors nodules to detect normal form. The front-end machine has)
‘ itself an important role to play in the reduction process, namely, to watch its]
. development and determine when it has reached a suitable stopping point. In the 5
-; LNF-Plus system, the reduction continues until the lazy normal form is attained by the
,.; expression graph (see Volume 2, 3.4). It will be recalled that lazy normal form consists
2 of not containing an initial redex; other (non-initial) redexes may well be present. This .
Py means that the "spine" of the graph is in its final form, but the "arguments” need not be. 1
: This condition can be detected by examination of the graph's spine alone. The spine of)
- a meaningful graph is the longest sequence of vertices, starting at its root, such that
| ; each vertex is the operator of its predecessor. It follows immediately from this definition {
66 s
 Potea B R L LR A AR RN
" R R S N N S Y AR S A NN
el EE I N AT I N N .w.-mf‘m;mh

5';5 ,
A

- o -
LRSI S

e
/l'l‘ I‘ l’ I‘/

AR \"i-:rv"t N o

s a4 A

. u
Je e

a0

0
A9 Hh

5@

NAAASS

- -

A

e
L
4

@

,-
U

&+
i WA b

®
v
Q"
.-l

Fé.

that the spine is finite, and that its last element is an atom. This atom is called the initial
atom of the graph. If the spine contains no redex (and it can contain at most one) then
(by definition) the graph is in lazy normal form. So the front-end machine has to watch
for the spine's becoming "empty" of redexes. The following discussion is a summary of
that in Volume 2, 1.3.3.

The LNF field. The field LNF in the local memory of nodule i is set to true when the
vertex i detects that iis in lazy normal form. Thatis to say, i observes that the following
condition is true:

either i i3 an atom
or Iis a pointer and the field LNF [WHERE [i]]is true
or i is @ non-redex combination and LNF [OPERATOR [i]] is true.

Each nodule i, as part of its routine behavior, monitors this condition and sets LNFJi] to
true as soon as the condition becomes true.

The SUPER front-end machine need only watch the root's LNF field. Given the correct
implementation of the above piece of nodule behavior, it is easy tc see that the
front-end machine need only watch the LNF field of the root nodule to be able to detect
when the graph has reached lazy normal form. Compared with the lazy normal form
reached by the single-reduction system LNF-Plus, the SUPER lazy normal form will be
somewhat more "refined" in the sense that the arguments of the expression will have
experienced many more reducticn steps.

SUPER parallelism invisible to user. We emphasize again the point that data parallel
computation has the very desirable feature that it feels to the user, sitting at the front-end
machine, just like ordinary single-processor computation, the concurrency behind the
scenes being invisible. In SUPER computations the user is aware only of the fact that
the expressions given to the front-end machine as input evoke some kind of internal
reduction process which results eventually in a suitable output expression. That this
involves the cooordinated behavior of a very large number of processors is evident only
indirectly from the speed with which the reduction takes place and from the fact that the
arguments (in a lazy mode of reduction) are reduced somewhat further than would have
been the case in a single-reduction machine.

R AN AN AN - w* LT T S R T LR TN
P\ .PA'.:' }'*.‘w\". .ﬂ- vy \. \" j\";&\‘:\/\';\J\",«' RS
------------- A ‘_ RSN LR ENART N SR
A N
S A L T T

This implicit parallelism avoids the extremely difficult problems of intellectual control
over the complexity of a system of cooperating concurrent processes. To try to remain

cognizant of the separate behavior of each processor in a large multiprocessor system
is a severe strain on the limited human capacity to handle dynamically changing
information patterns.

2
S WA AN

NN WY

»

[JLe
A2 d

Ay
[W b

A

68
0
. %5 ' ~, Un L L A L AT R e T Aol S A -\n-u NG,
o..'n'"‘: .:::. .9‘ ,,.. "V‘. .)~ Q- 3- COng .J’ .r\. ol -5: %:“::"':r * ,:: :’;:.r‘.h.‘ "~;{'- .r\?' ,\.; },\},‘_ {\}‘&“W .-\".;:&

'; .l ... y .“"' .. "'Q ':‘.' ‘.%.M ."‘.'0 o8, ’ .‘ . V "040 ! !.“l .’. Q'i () l ["k', '.,Q;‘ (i q:~" () 0" .|.l .|~. al‘“ 9

S

TR TW W T W T W

CHAPTER 4. RELATED WORK.

We are aware of other work on parallel combinator reduction by Simon Peyton Jjones

[5], Paul Hudak [18], and by Joseph Goguen and Jose Meseguer [11].

The ALICE project [9] at Imperial College, London, is a multiple-reduction parallel
architecture for the A-calculus. Mago [22] has a project to design a fine-grained

parallel multiple-reduction machine for the A-calculus. There are several projects to
develop dataflow architectures which must be considered multiple-reduction machines
for simple applicative systems which fall short of the full expressive power of the
languages considered in this report. Only one of these, at the University of Manchester
in England, has actually been built [14].

The earliest reduction machine architecture of any kind known to us is Klaus Berkling's

A-calculus single-reduction processor, the GMD Machine [3]. More recently there have
been two SKIl-graph single-reduction machines built by the SKIM group led by Arthur
Norman in Cambridge, England [8], and another one built by the NORMA group at the
former Austin Research Center of the Burroughs-SDC Corporation (now UNISYS) [25].
There is another project currently under way at the UNISYS Paoli Research Center to
build a system similar to SUPER. The G-machine system [1, 19] at the University of
Goteborg in Sweden involves compiling runtime code for a conventional von Neumann
processor too carry out the reduction of a SKl-graph-like transform of the source

expression.

Of course it is the pioneering, elegant systems of Turner [28] which have inspired much

of the above work, and which certainly have been a major influence on our own.

69

>t e ~ . -'\
TN .{' o
X ‘js J.-x.,.._,_\.\ "\ $-\
-'\ J‘

At e mma

..-'-.

PRt S P

-

hfata®a 27"

REFERENCES.

[1] Augustsson, L. A compiler for Lazy ML. Contference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, Austin, 1984,

[2] Backus, J. Can programming be liberated from the von Neumann style?
The Turing Award Lecture for 1977, in Communications of
the A.C.M., August 1978.

[3] Berkling, K. J. Reduction Languages for Reduction Machines. Second
International Symposium on Computer Architecture, 1975.

(4] Burge, W. H. Recursive programming techniques. Addison-Wesley, 1975

(5] Clack, C. & The Four-stroke reduction engine. Conference Record of the
Peyton Jones, S. 1986 Symposium on Lisp and Functional Programming, 1986.

(6] Clark, K. L. Negation as failure. [n Logic and Databases, edited by Gallaire
and Minker. Plenum Press, 1978.

(7] Clark, K. L. Predicate logic as a programming formalism. Ph.D. Thesis,
Imperial College, London, 1979.

[8] Clarke, T. J. W. SKIM - The S, K, | Reduction Machine. Conference Record of
et al. the 1980 Symposium on Lisp and Functional Programming.

[9] Darlington, J. & ALICE - a multiprocessor reduction machine for the parailel

>
‘ Reeve, M. evaluationof applicative languages. Symposium on functional
Y languages and their implications for computer architecture.
., Goteborg, Sweden, 1981.
.
v
v (10] Fuchi, K. Revisiting original philosophy of Fifth Generation Project
K Proceedings of the International Conference on Fifth Generation
Computer Systems 1984. ICOT, Tokyo, 1984.
70
e

eyt "R "-)"" IS WA “‘:" .f' - -P"f' L4 "0-"“.:-"3-‘3".-' J‘N %’- ! ‘\-" ! \;ﬁ'lhf '\V\' o ~ " My NN
;b“ .#. ? 1', N ’(l.$ "’l-'ﬁ.;..’-"; ,,. ’ "~ bjh*"l)’ N*\M \l‘f"\ ‘f \ﬁ
R I -ri ﬁé: E@sﬁ

e,
Yoty "' " “' 0 "“'.N'.'o O, '- N .‘0 Y O0A L, "-' AN :'l .'o Hih u"'.‘l Wy 0‘0“'0.“:% 'y n‘l.'t!"&..f..."'?.'lf S .u“.o n".o‘ﬁo“

At Alia A JSe 3t A0 B 2" S0 Ar S R ANL At A e S A 8 Bl B} B Sl S B At Aal ek Sk Zad Aad Bat Set Aum A las ¢ T"’

;2??

I;J

N

-
:"- (11] Goguen, J. & Models of computation for the Rewrite Rule Machine. SRI
»” Meseguer, J. Technical Report, July 1986.

- (12} Greene, K.J. A fully lazy, higher order, purely functional reduction language
- with reduction semantics. CASE Center Report 8503,

. . Syracuse,1985. (also Volume 2 of this report).

-

: [13] Greene, K.J. User's Guide to the LNF-Plus System.

i Syracuse University, 1987. (also Volume 3 of this report)

(14] Gurd, J.R. et al. The Manchester prototype dataflow computer.

- University of Manchester Technical Report, 1979.

A%

!f (15] Henderson, P. Functional Programming. Academic Press, 1979.

, [16] Hillis, W. D. The Connection Machine. MIT Press, 1985.

1:"-

. (17] Hillis, W. D. & Data parallel algorithms. Communications of the A.C.M 29,

5 Steele, G. L., Jr. 1986, 1170 - 1183.

.-* (18] Hudak, P. & Distributed execution of functional programs using serial

/ Goldberg, B. combinators. IEEE Transactions on Computers, Vol. C-34, 1985.
150

2

:j‘.g (19] Johnsson, T. The G-Machine: an abstract machine for graph reduction.
o Goteborg, 1983.

®

§ E: [20] Kowalski, R. A. Predicate logic as programming language. Proceedings of IFIP
e Congress 74.

™

. (21] Landin, P. The next 700 programming languages. Communications of the.
B ‘H

o A.C.M. 9, 1966.

N [(22] Mago, G. A cellular architecture for functional programming. Proceedings
vl g g
K] of IEEE Computer Conference 1986.

S

X

:::: 71

"

K\, .

f R e A R A T T T e s O T S AT A e - ~ I SRR N P T L L IR W R RS GRE ~
N $'~»_~$__.~:$:;$:$:?:ﬁ:i:i:ﬁ:;;ﬁ,_ﬁ;i:ﬁ:-- D O AR S R e
1:‘..\0"10.‘.""9"'\0.':.‘\‘30.\:q ." " { {-"i{i"\{." 3 . - .';\“ J-: 0%

(23! Robinson, J. A. A machine-oriented logic based on the resolution principle.

JA.CM. 12,1965, 23 - 41.

'24] Robinson, J. A. & LOGLISP - an alternative to PROLOG. Machine Intelligence 10,
Sibert, E. E. 1982.

[25] Scheevel, M. NORMA: a graph reduction processor. Conference Record of the
1986 ACM Symposium on Lisp and Functional Programming.

[26] Steele, G.L. Jr. SCHEME: an interpreter for extended lambda calculus. Al Memo
& Sussman, G.J. 349, MIT, 1975,

[27] Stoye, W. R., Some practical methods for rapid combinator reduction.
et al. Conference Record of the 1984 Symposium on Lisp and
Functional Programming, 1984.

[28] Turner, D. A. A new implementation technique for applicative languages.
oftware Practice and Experience, 9, 1979.

72

Coa Lo Wy W, o W, rv'-..---,. ~ . . e ety .
S:“f:’f:'." .VW“'J::::‘(:J. .r:.r"q.f"r ' (E-J‘:I.‘-'\I\I\I\:;_‘j

als Py e, d‘,"",\'f\'-‘ T, AN NMN N RNS

s W L LA ntn, Ll

LWL) ! Pt At N

WA AR

1 LA
PR)

Py

2.

S

A
., .I * 'y s
W tat et

@ .

Y Y VY YW T WYY VXN
P et " 3
[P ARLISY ‘1';'_;')'.:‘1", !

S -

{
J':.P:'.ﬁ:'x:_f' AT o N
O AR e e e : A .
A NN el e
ST N O AT RS N
VNSO FEHRAERCRERRRTY, CRr

€A A S SF IS K 581K A K K AF S S SF 9K L AF XS

N

o

§
|
|

o

X

S HAF XSS R 5F I SF

MISSION
of

Rome Avr Development Center

RADC plans and exccutes reseatch, develcepment, test
and selected acquisition procgrams (n support ¢f
Command, Control, Communicaticns and Tntelligence
(COT) actdvities. Techndical and engineening
Suppert within areas ¢4 cempetence 4s previded to
ESD Pregham Ojfdices (POs) and cothern ESD elements

te petfonm effective acquisiticn of C31 systems,
Tne areas ¢f tecandical cempetence (nclude
commupndcateens, coemmand and contacd, battle
maitagement, (nformation precessdng, Survedllaace
sesens, ntecdigence data codfection and nandd g,
seccd state sciences, edectromagneties, and
srogaaateon, and coecttonde, madntadaability,

Wil Cempatdb et

e
FF R SIS oA SF S SF K SF

€ OB 2 A2 SH AN O o A SF S SF DA ANy

AP AA bl A ML Sl anl AL il oA o ol sl el ath ol bd S a Sl Aal s 4 v, -:-]

B P iy ——

2 A% 4% £'s A% Aty B'e d<a Aia A% A00 BV SV AR A e B BB Rdl Aol Gl L S SaF ot Gur 0o A R uliS ald oth o |

A.::.‘l;is:, e . - o . .) '
:::;:‘.3\.:'.,. ..:.;:,"""::f". 5 \‘ &

R l
‘.'l‘.,

A0 l‘. :0 o‘. 'h. I.'h |.",'|‘|“

